Energy-transfer from ultra-small Au nanoclusters to Er³⁺ ions: a short-range mechanism

Sub-nanometric Au nanoclusters are known to act as very efficient sensitizers for the luminescent emission of Er(3+) ions in silica through a non-resonant broad-band energy-transfer mechanism. In the present work the energy-transfer process is investigated in detail by room temperature photoluminesc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2014-08, Vol.16 (29), p.15158-15163
Hauptverfasser: Cesca, Tiziana, Kalinic, Boris, Michieli, Niccolò, Maurizio, Chiara, Scian, Carlo, Devaraju, Gurram, Battaglin, Giancarlo, Mazzoldi, Paolo, Mattei, Giovanni
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sub-nanometric Au nanoclusters are known to act as very efficient sensitizers for the luminescent emission of Er(3+) ions in silica through a non-resonant broad-band energy-transfer mechanism. In the present work the energy-transfer process is investigated in detail by room temperature photoluminescence characterization of Er and Au co-implanted silica systems in which a different degree of coupling between Er(3+) ions and Au nanoclusters is obtained. The results allow us to definitely demonstrate the short-range nature of the interaction in agreement with non-radiative energy-transfer mechanisms. Moreover, an upper limit to the interaction length is also set by the Au-Au intercluster semi-distance which is smaller than 2.4 nm in the present case.
ISSN:1463-9076
1463-9084
DOI:10.1039/c4cp01680g