Opposite photocatalytic activity orders of low-index facets of anatase TiO₂ for liquid phase dye degradation and gaseous phase CO₂ photoreduction
We firstly demonstrate the opposite photocatalytic activity orders of low-index facets of anatase TiO2 in the liquid phase for rhodamine B (RhB) photocatalytic degradation and in the gaseous phase for the photoreduction of CO2 to CH4. The photocatalytic activity order in the liquid phase for RhB pho...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2014-01, Vol.16 (29), p.15675-15680 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We firstly demonstrate the opposite photocatalytic activity orders of low-index facets of anatase TiO2 in the liquid phase for rhodamine B (RhB) photocatalytic degradation and in the gaseous phase for the photoreduction of CO2 to CH4. The photocatalytic activity order in the liquid phase for RhB photocatalytic degradation is revealed as {001} > {101} > {010}, whereas the photocatalytic activity order {010} > {101} > {001} is found in the gaseous phase for the photoreduction of CO2 to CH4. The atomic arrangement of the different facets, UV-vis diffuse reflectance spectra, photoluminescence spectra and attenuated total reflectance Fourier transform infrared spectroscopy analysis show that the photoactivity order in the gas phase for the photoreduction of CO2 to CH4 mainly depends on the CO2 molecule adsorption properties on the different exposed facets, and the separation efficiency of the photo-generated carriers determines the photoactivity order for the dye degradation reaction in the liquid phase. These findings also provide a new direction to design efficient photocatalysts and the tuning of their photoreactivity for environmental and energy applications. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c4cp01488j |