Enhancement in SERS intensity with hierarchical nanostructures by bimetallic deposition approach

We investigate the plasmonic enhancement arising from bimetallic (Au/Ag) hierarchical structure and address the fundamental issues relating to the design of multilayered nanostructures for surface‐enhanced Raman scattering (SERS) spectroscopy. SERS‐active nanosphere arrays with Ag underlayer and Au...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Raman spectroscopy 2012-08, Vol.43 (8), p.977-985
Hauptverfasser: Fu, Chit Yaw, Kho, Kiang Wei, Dinish, U. S., Koh, Zhen Yu, Malini, Olivo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the plasmonic enhancement arising from bimetallic (Au/Ag) hierarchical structure and address the fundamental issues relating to the design of multilayered nanostructures for surface‐enhanced Raman scattering (SERS) spectroscopy. SERS‐active nanosphere arrays with Ag underlayer and Au overlayer were systematically constructed, with the thickness of each layer altered from 40 to 320 nm. The SERS responses of the resultant bimetallic structures were measured with 2‐naphthalenethiol dye as the test sample. The results confirm the dependency of SERS enhancement on the thickness ratio (Au : Ag). Compared with Au‐arrays, our optimized bimetallic structures, which exhibit nanoprotrusions on the nanospheres, were found to be 2.5 times more SERS enhancing, approaching the enhancement factor of an Ag‐array. The elevated SERS is attributed to the formation of effective hot‐spots associated with increased roughness of the outer Au film, resulting from subsequent sputtering of Au granules on a roughened Ag surface. The morphology and reflectance studies suggest that the SERS hot‐spots are distributed at the junctions of interconnected nanospheres and over the nanosphere surface, depending on the thickness ratio between the Au and Ag layers. We show that, by varying the thickness ratio, it is possible to optimize the SERS enhancement factor without significantly altering the operating plasmon resonance wavelength, which is dictated solely by the size of the underlying nanospheres template. In addition, our bimetallic substrates show long‐term stability compared with previously reported Ag‐arrays, whose SERS efficiency drops by 60% within a week because of oxidation. These findings demonstrate the potential of using such a bimetallic configuration to morphologically optimize any SERS substrate for sensing applications that demand huge SERS enhancement and adequate chemical stability. Copyright © 2011 John Wiley & Sons, Ltd. Additional SERS enhancement induced on bimetallic (Ag/Au) hierarchical structure is investigated using nanosphere arrays with Ag underlayer and Au overlayer. The significant dependency of SERS enhancement on the Ag/Au thickness ratio is confirmed. Importantly, compared with Au‐array, the optimized bimetallic structures exhibit quasi‐particles on the nanospheres with surpassing SERS (2.5×), approaching to that of Ag‐array. The elevated SERS is attributed to the formation of effective hot‐spots associated with enhanced roughness of the out
ISSN:0377-0486
1097-4555
DOI:10.1002/jrs.3128