Analysis about Effect of Hollow on Time-Frequency Characteristic of Surface Vibration Signal

In blasting excavation of shallow tunnel, the surface vibration of excavated tunnel can be amplified due to effect of hollow. This effect is an important factor for safety of surface buildings. Based on the measured data of one tunnel excavation project, combining wavelet analysis and AOK time-frequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-02, Vol.533 (Modern Tendencies in Engineering Sciences), p.181-186
Hauptverfasser: Chi, En An, Kang, Qiang, Tao, Tie Jun, Zhao, Ming Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In blasting excavation of shallow tunnel, the surface vibration of excavated tunnel can be amplified due to effect of hollow. This effect is an important factor for safety of surface buildings. Based on the measured data of one tunnel excavation project, combining wavelet analysis and AOK time-frequency distribution method, the surface vibration signals in front and rear position of working face are processed into different frequency bands. Taking PPV, dominant frequency, d7 (7.8125-15.625 Hz) band energy ratio and d7 (7.8125-15.625 Hz) band energy duration as indexes, the effect of hollow on time-frequency characteristics of surface vibration signal is studied in this article. The results show that, affected by the hollow in excavated region, the PPV and dominant frequency increase, and the d7 (7.8125-15.625 Hz) band energy shows fluctuant ratio of total energy and an increase of band energy duration. The results show that the hollow influence on the frequency characteristics of the surface vibration signals comprehensively, and also provide an analytical basis for anti-vibration and vibration reduction study from the angle of energy.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.533.181