Tropical geometry and the motivic nearby fiber
We construct motivic invariants of a subvariety of an algebraic torus from its tropicalization and initial degenerations. More specifically, we introduce an invariant of a compactification of such a variety called the ‘tropical motivic nearby fiber’. This invariant specializes in the schön case to t...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2012-01, Vol.148 (1), p.269-294 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 294 |
---|---|
container_issue | 1 |
container_start_page | 269 |
container_title | Compositio mathematica |
container_volume | 148 |
creator | Katz, Eric Stapledon, Alan |
description | We construct motivic invariants of a subvariety of an algebraic torus from its tropicalization and initial degenerations. More specifically, we introduce an invariant of a compactification of such a variety called the ‘tropical motivic nearby fiber’. This invariant specializes in the schön case to the Hodge–Deligne polynomial of the limit mixed Hodge structure of a corresponding degeneration. We give purely combinatorial expressions for this Hodge–Deligne polynomial in the cases of schön hypersurfaces and matroidal tropical varieties. We also deduce a formula for the Euler characteristic of a general fiber of the degeneration. |
doi_str_mv | 10.1112/S0010437X11005446 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541444772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X11005446</cupid><sourcerecordid>1541444772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-4c033ac7f83adecfbf5a9cd4172b779d87effe9de453434999a9796abc3c9d3b3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN3gys3U3EmmmSylaBUKLqzgLuRxU1PmUZOp0H9vhxYExdVdnO87XA4h10AnAFDcvVIKlDPxDkBpyfn0hIygFDQvKz49JaMhzof8nFyktKaUFlVRjchkGbtNsLrOVtg12MddpluX9R-YNV0fvoLNWtTR7DIfDMZLcuZ1nfDqeMfk7fFhOXvKFy_z59n9IrdMFn3OLWVMW-Erph1ab3yppXUcRGGEkK4S6D1Kh7xknHEppZZCTrWxzErHDBuT20PvJnafW0y9akKyWNe6xW6bFJQcOOdCFHv05he67rax3X-nJAjJqYQBggNkY5dSRK82MTQ67hRQNQyo_gy4d9jR0Y2Jwa3wp_l_6xtNbXFx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917940912</pqid></control><display><type>article</type><title>Tropical geometry and the motivic nearby fiber</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge University Press Journals Complete</source><creator>Katz, Eric ; Stapledon, Alan</creator><creatorcontrib>Katz, Eric ; Stapledon, Alan</creatorcontrib><description>We construct motivic invariants of a subvariety of an algebraic torus from its tropicalization and initial degenerations. More specifically, we introduce an invariant of a compactification of such a variety called the ‘tropical motivic nearby fiber’. This invariant specializes in the schön case to the Hodge–Deligne polynomial of the limit mixed Hodge structure of a corresponding degeneration. We give purely combinatorial expressions for this Hodge–Deligne polynomial in the cases of schön hypersurfaces and matroidal tropical varieties. We also deduce a formula for the Euler characteristic of a general fiber of the degeneration.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X11005446</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Algebra ; Combinatorial analysis ; Construction ; Degeneration ; Fibers ; Geometry ; Invariants ; Mathematical analysis ; Polynomials</subject><ispartof>Compositio mathematica, 2012-01, Vol.148 (1), p.269-294</ispartof><rights>Copyright © Foundation Compositio Mathematica 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-4c033ac7f83adecfbf5a9cd4172b779d87effe9de453434999a9796abc3c9d3b3</citedby><cites>FETCH-LOGICAL-c392t-4c033ac7f83adecfbf5a9cd4172b779d87effe9de453434999a9796abc3c9d3b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X11005446/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Katz, Eric</creatorcontrib><creatorcontrib>Stapledon, Alan</creatorcontrib><title>Tropical geometry and the motivic nearby fiber</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>We construct motivic invariants of a subvariety of an algebraic torus from its tropicalization and initial degenerations. More specifically, we introduce an invariant of a compactification of such a variety called the ‘tropical motivic nearby fiber’. This invariant specializes in the schön case to the Hodge–Deligne polynomial of the limit mixed Hodge structure of a corresponding degeneration. We give purely combinatorial expressions for this Hodge–Deligne polynomial in the cases of schön hypersurfaces and matroidal tropical varieties. We also deduce a formula for the Euler characteristic of a general fiber of the degeneration.</description><subject>Algebra</subject><subject>Combinatorial analysis</subject><subject>Construction</subject><subject>Degeneration</subject><subject>Fibers</subject><subject>Geometry</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN3gys3U3EmmmSylaBUKLqzgLuRxU1PmUZOp0H9vhxYExdVdnO87XA4h10AnAFDcvVIKlDPxDkBpyfn0hIygFDQvKz49JaMhzof8nFyktKaUFlVRjchkGbtNsLrOVtg12MddpluX9R-YNV0fvoLNWtTR7DIfDMZLcuZ1nfDqeMfk7fFhOXvKFy_z59n9IrdMFn3OLWVMW-Erph1ab3yppXUcRGGEkK4S6D1Kh7xknHEppZZCTrWxzErHDBuT20PvJnafW0y9akKyWNe6xW6bFJQcOOdCFHv05he67rax3X-nJAjJqYQBggNkY5dSRK82MTQ67hRQNQyo_gy4d9jR0Y2Jwa3wp_l_6xtNbXFx</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Katz, Eric</creator><creator>Stapledon, Alan</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201201</creationdate><title>Tropical geometry and the motivic nearby fiber</title><author>Katz, Eric ; Stapledon, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-4c033ac7f83adecfbf5a9cd4172b779d87effe9de453434999a9796abc3c9d3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algebra</topic><topic>Combinatorial analysis</topic><topic>Construction</topic><topic>Degeneration</topic><topic>Fibers</topic><topic>Geometry</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, Eric</creatorcontrib><creatorcontrib>Stapledon, Alan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katz, Eric</au><au>Stapledon, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tropical geometry and the motivic nearby fiber</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2012-01</date><risdate>2012</risdate><volume>148</volume><issue>1</issue><spage>269</spage><epage>294</epage><pages>269-294</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>We construct motivic invariants of a subvariety of an algebraic torus from its tropicalization and initial degenerations. More specifically, we introduce an invariant of a compactification of such a variety called the ‘tropical motivic nearby fiber’. This invariant specializes in the schön case to the Hodge–Deligne polynomial of the limit mixed Hodge structure of a corresponding degeneration. We give purely combinatorial expressions for this Hodge–Deligne polynomial in the cases of schön hypersurfaces and matroidal tropical varieties. We also deduce a formula for the Euler characteristic of a general fiber of the degeneration.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X11005446</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-437X |
ispartof | Compositio mathematica, 2012-01, Vol.148 (1), p.269-294 |
issn | 0010-437X 1570-5846 |
language | eng |
recordid | cdi_proquest_miscellaneous_1541444772 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge University Press Journals Complete |
subjects | Algebra Combinatorial analysis Construction Degeneration Fibers Geometry Invariants Mathematical analysis Polynomials |
title | Tropical geometry and the motivic nearby fiber |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tropical%20geometry%20and%20the%20motivic%20nearby%20fiber&rft.jtitle=Compositio%20mathematica&rft.au=Katz,%20Eric&rft.date=2012-01&rft.volume=148&rft.issue=1&rft.spage=269&rft.epage=294&rft.pages=269-294&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X11005446&rft_dat=%3Cproquest_cross%3E1541444772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917940912&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X11005446&rfr_iscdi=true |