Tropical geometry and the motivic nearby fiber

We construct motivic invariants of a subvariety of an algebraic torus from its tropicalization and initial degenerations. More specifically, we introduce an invariant of a compactification of such a variety called the ‘tropical motivic nearby fiber’. This invariant specializes in the schön case to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2012-01, Vol.148 (1), p.269-294
Hauptverfasser: Katz, Eric, Stapledon, Alan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct motivic invariants of a subvariety of an algebraic torus from its tropicalization and initial degenerations. More specifically, we introduce an invariant of a compactification of such a variety called the ‘tropical motivic nearby fiber’. This invariant specializes in the schön case to the Hodge–Deligne polynomial of the limit mixed Hodge structure of a corresponding degeneration. We give purely combinatorial expressions for this Hodge–Deligne polynomial in the cases of schön hypersurfaces and matroidal tropical varieties. We also deduce a formula for the Euler characteristic of a general fiber of the degeneration.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X11005446