Equidistribution of singular measures on nilmanifolds and skew products

We prove that for a minimal rotation T on a two-step nilmanifold and any measure μ, the push-forward Tn⋆μ of μ under Tn tends toward Haar measure if and only if μ projects to Haar measure on the maximal torus factor. For an arbitrary nilmanifold we get the same result along a sequence of uniform den...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2011-12, Vol.31 (6), p.1785-1817
1. Verfasser: POLO, FABRIZIO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1817
container_issue 6
container_start_page 1785
container_title Ergodic theory and dynamical systems
container_volume 31
creator POLO, FABRIZIO
description We prove that for a minimal rotation T on a two-step nilmanifold and any measure μ, the push-forward Tn⋆μ of μ under Tn tends toward Haar measure if and only if μ projects to Haar measure on the maximal torus factor. For an arbitrary nilmanifold we get the same result along a sequence of uniform density one. These results strengthen Parry’s result [Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math.91 (1968), 757–771] that such systems are uniquely ergodic. Extending the work of Furstenberg [Strict ergodicity and transformations of the torus. Amer. J. Math.83 (1961), 573–601], we get the same result for a large class of iterated skew products. Additionally we prove a multiplicative ergodic theorem for functions taking values in the upper unipotent group. Finally we characterize limits of Tn⋆μ for some skew product transformations with expansive fibers. All results are presented in terms of twisting and weak twisting, properties that strengthen unique ergodicity in a way analogous to that in which mixing and weak mixing strengthen ergodicity for measure-preserving systems.
doi_str_mv 10.1017/S0143385710000684
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541444545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385710000684</cupid><sourcerecordid>1541444545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-10f08c7135883340a7e94feced448a775bc31a5b0b35b3e18872dec8e934a9683</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNviyctqppk02aOUWoWCB_UcstlsSd0_bbJB_PZmaUFQnMvAvN-bGR4h10DvgIK4f6WAjEkugKaaSzwhE8B5kSOCOCWTUc5H_ZxchLBNDAPBJ2S13EdXuTB4V8bB9V3W11lw3SY22met1SF6G7I071zT6s7VfVOFTHdVFj7sZ7bzfRXNEC7JWa2bYK-OfUreH5dvi6d8_bJ6Xjysc8MQhxxoTaURwLiUjCHVwhZYW2MrRKmF4KVhoHlJS8ZLZkFKMauskbZgqIu5ZFNye9ibDu-jDYNqXTC2aXRn-xgUcARE5MgTevML3fbRd-k7VVA242MyCYIDZHwfgre12nnXav-lgKoxWfUn2eRhR49uS--qjf3Z_L_rG9FleeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903254417</pqid></control><display><type>article</type><title>Equidistribution of singular measures on nilmanifolds and skew products</title><source>Cambridge University Press Journals Complete</source><creator>POLO, FABRIZIO</creator><creatorcontrib>POLO, FABRIZIO</creatorcontrib><description>We prove that for a minimal rotation T on a two-step nilmanifold and any measure μ, the push-forward Tn⋆μ of μ under Tn tends toward Haar measure if and only if μ projects to Haar measure on the maximal torus factor. For an arbitrary nilmanifold we get the same result along a sequence of uniform density one. These results strengthen Parry’s result [Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math.91 (1968), 757–771] that such systems are uniquely ergodic. Extending the work of Furstenberg [Strict ergodicity and transformations of the torus. Amer. J. Math.83 (1961), 573–601], we get the same result for a large class of iterated skew products. Additionally we prove a multiplicative ergodic theorem for functions taking values in the upper unipotent group. Finally we characterize limits of Tn⋆μ for some skew product transformations with expansive fibers. All results are presented in terms of twisting and weak twisting, properties that strengthen unique ergodicity in a way analogous to that in which mixing and weak mixing strengthen ergodicity for measure-preserving systems.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385710000684</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Affine transformations ; Density ; Dynamical systems ; Ergodic processes ; Expansion ; Mathematical analysis ; Theorems ; Transformations ; Twisting</subject><ispartof>Ergodic theory and dynamical systems, 2011-12, Vol.31 (6), p.1785-1817</ispartof><rights>Copyright © Cambridge University Press 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-10f08c7135883340a7e94feced448a775bc31a5b0b35b3e18872dec8e934a9683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385710000684/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>POLO, FABRIZIO</creatorcontrib><title>Equidistribution of singular measures on nilmanifolds and skew products</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We prove that for a minimal rotation T on a two-step nilmanifold and any measure μ, the push-forward Tn⋆μ of μ under Tn tends toward Haar measure if and only if μ projects to Haar measure on the maximal torus factor. For an arbitrary nilmanifold we get the same result along a sequence of uniform density one. These results strengthen Parry’s result [Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math.91 (1968), 757–771] that such systems are uniquely ergodic. Extending the work of Furstenberg [Strict ergodicity and transformations of the torus. Amer. J. Math.83 (1961), 573–601], we get the same result for a large class of iterated skew products. Additionally we prove a multiplicative ergodic theorem for functions taking values in the upper unipotent group. Finally we characterize limits of Tn⋆μ for some skew product transformations with expansive fibers. All results are presented in terms of twisting and weak twisting, properties that strengthen unique ergodicity in a way analogous to that in which mixing and weak mixing strengthen ergodicity for measure-preserving systems.</description><subject>Affine transformations</subject><subject>Density</subject><subject>Dynamical systems</subject><subject>Ergodic processes</subject><subject>Expansion</subject><subject>Mathematical analysis</subject><subject>Theorems</subject><subject>Transformations</subject><subject>Twisting</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNviyctqppk02aOUWoWCB_UcstlsSd0_bbJB_PZmaUFQnMvAvN-bGR4h10DvgIK4f6WAjEkugKaaSzwhE8B5kSOCOCWTUc5H_ZxchLBNDAPBJ2S13EdXuTB4V8bB9V3W11lw3SY22met1SF6G7I071zT6s7VfVOFTHdVFj7sZ7bzfRXNEC7JWa2bYK-OfUreH5dvi6d8_bJ6Xjysc8MQhxxoTaURwLiUjCHVwhZYW2MrRKmF4KVhoHlJS8ZLZkFKMauskbZgqIu5ZFNye9ibDu-jDYNqXTC2aXRn-xgUcARE5MgTevML3fbRd-k7VVA242MyCYIDZHwfgre12nnXav-lgKoxWfUn2eRhR49uS--qjf3Z_L_rG9FleeQ</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>POLO, FABRIZIO</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201112</creationdate><title>Equidistribution of singular measures on nilmanifolds and skew products</title><author>POLO, FABRIZIO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-10f08c7135883340a7e94feced448a775bc31a5b0b35b3e18872dec8e934a9683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Affine transformations</topic><topic>Density</topic><topic>Dynamical systems</topic><topic>Ergodic processes</topic><topic>Expansion</topic><topic>Mathematical analysis</topic><topic>Theorems</topic><topic>Transformations</topic><topic>Twisting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>POLO, FABRIZIO</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>POLO, FABRIZIO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equidistribution of singular measures on nilmanifolds and skew products</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2011-12</date><risdate>2011</risdate><volume>31</volume><issue>6</issue><spage>1785</spage><epage>1817</epage><pages>1785-1817</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We prove that for a minimal rotation T on a two-step nilmanifold and any measure μ, the push-forward Tn⋆μ of μ under Tn tends toward Haar measure if and only if μ projects to Haar measure on the maximal torus factor. For an arbitrary nilmanifold we get the same result along a sequence of uniform density one. These results strengthen Parry’s result [Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math.91 (1968), 757–771] that such systems are uniquely ergodic. Extending the work of Furstenberg [Strict ergodicity and transformations of the torus. Amer. J. Math.83 (1961), 573–601], we get the same result for a large class of iterated skew products. Additionally we prove a multiplicative ergodic theorem for functions taking values in the upper unipotent group. Finally we characterize limits of Tn⋆μ for some skew product transformations with expansive fibers. All results are presented in terms of twisting and weak twisting, properties that strengthen unique ergodicity in a way analogous to that in which mixing and weak mixing strengthen ergodicity for measure-preserving systems.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0143385710000684</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-3857
ispartof Ergodic theory and dynamical systems, 2011-12, Vol.31 (6), p.1785-1817
issn 0143-3857
1469-4417
language eng
recordid cdi_proquest_miscellaneous_1541444545
source Cambridge University Press Journals Complete
subjects Affine transformations
Density
Dynamical systems
Ergodic processes
Expansion
Mathematical analysis
Theorems
Transformations
Twisting
title Equidistribution of singular measures on nilmanifolds and skew products
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equidistribution%20of%20singular%20measures%20on%20nilmanifolds%20and%20skew%20products&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=POLO,%20FABRIZIO&rft.date=2011-12&rft.volume=31&rft.issue=6&rft.spage=1785&rft.epage=1817&rft.pages=1785-1817&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385710000684&rft_dat=%3Cproquest_cross%3E1541444545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903254417&rft_id=info:pmid/&rft_cupid=10_1017_S0143385710000684&rfr_iscdi=true