Equidistribution of singular measures on nilmanifolds and skew products
We prove that for a minimal rotation T on a two-step nilmanifold and any measure μ, the push-forward Tn⋆μ of μ under Tn tends toward Haar measure if and only if μ projects to Haar measure on the maximal torus factor. For an arbitrary nilmanifold we get the same result along a sequence of uniform den...
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2011-12, Vol.31 (6), p.1785-1817 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1817 |
---|---|
container_issue | 6 |
container_start_page | 1785 |
container_title | Ergodic theory and dynamical systems |
container_volume | 31 |
creator | POLO, FABRIZIO |
description | We prove that for a minimal rotation T on a two-step nilmanifold and any measure μ, the push-forward Tn⋆μ of μ under Tn tends toward Haar measure if and only if μ projects to Haar measure on the maximal torus factor. For an arbitrary nilmanifold we get the same result along a sequence of uniform density one. These results strengthen Parry’s result [Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math.91 (1968), 757–771] that such systems are uniquely ergodic. Extending the work of Furstenberg [Strict ergodicity and transformations of the torus. Amer. J. Math.83 (1961), 573–601], we get the same result for a large class of iterated skew products. Additionally we prove a multiplicative ergodic theorem for functions taking values in the upper unipotent group. Finally we characterize limits of Tn⋆μ for some skew product transformations with expansive fibers. All results are presented in terms of twisting and weak twisting, properties that strengthen unique ergodicity in a way analogous to that in which mixing and weak mixing strengthen ergodicity for measure-preserving systems. |
doi_str_mv | 10.1017/S0143385710000684 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541444545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385710000684</cupid><sourcerecordid>1541444545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-10f08c7135883340a7e94feced448a775bc31a5b0b35b3e18872dec8e934a9683</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNviyctqppk02aOUWoWCB_UcstlsSd0_bbJB_PZmaUFQnMvAvN-bGR4h10DvgIK4f6WAjEkugKaaSzwhE8B5kSOCOCWTUc5H_ZxchLBNDAPBJ2S13EdXuTB4V8bB9V3W11lw3SY22met1SF6G7I071zT6s7VfVOFTHdVFj7sZ7bzfRXNEC7JWa2bYK-OfUreH5dvi6d8_bJ6Xjysc8MQhxxoTaURwLiUjCHVwhZYW2MrRKmF4KVhoHlJS8ZLZkFKMauskbZgqIu5ZFNye9ibDu-jDYNqXTC2aXRn-xgUcARE5MgTevML3fbRd-k7VVA242MyCYIDZHwfgre12nnXav-lgKoxWfUn2eRhR49uS--qjf3Z_L_rG9FleeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903254417</pqid></control><display><type>article</type><title>Equidistribution of singular measures on nilmanifolds and skew products</title><source>Cambridge University Press Journals Complete</source><creator>POLO, FABRIZIO</creator><creatorcontrib>POLO, FABRIZIO</creatorcontrib><description>We prove that for a minimal rotation T on a two-step nilmanifold and any measure μ, the push-forward Tn⋆μ of μ under Tn tends toward Haar measure if and only if μ projects to Haar measure on the maximal torus factor. For an arbitrary nilmanifold we get the same result along a sequence of uniform density one. These results strengthen Parry’s result [Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math.91 (1968), 757–771] that such systems are uniquely ergodic. Extending the work of Furstenberg [Strict ergodicity and transformations of the torus. Amer. J. Math.83 (1961), 573–601], we get the same result for a large class of iterated skew products. Additionally we prove a multiplicative ergodic theorem for functions taking values in the upper unipotent group. Finally we characterize limits of Tn⋆μ for some skew product transformations with expansive fibers. All results are presented in terms of twisting and weak twisting, properties that strengthen unique ergodicity in a way analogous to that in which mixing and weak mixing strengthen ergodicity for measure-preserving systems.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385710000684</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Affine transformations ; Density ; Dynamical systems ; Ergodic processes ; Expansion ; Mathematical analysis ; Theorems ; Transformations ; Twisting</subject><ispartof>Ergodic theory and dynamical systems, 2011-12, Vol.31 (6), p.1785-1817</ispartof><rights>Copyright © Cambridge University Press 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-10f08c7135883340a7e94feced448a775bc31a5b0b35b3e18872dec8e934a9683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385710000684/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>POLO, FABRIZIO</creatorcontrib><title>Equidistribution of singular measures on nilmanifolds and skew products</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We prove that for a minimal rotation T on a two-step nilmanifold and any measure μ, the push-forward Tn⋆μ of μ under Tn tends toward Haar measure if and only if μ projects to Haar measure on the maximal torus factor. For an arbitrary nilmanifold we get the same result along a sequence of uniform density one. These results strengthen Parry’s result [Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math.91 (1968), 757–771] that such systems are uniquely ergodic. Extending the work of Furstenberg [Strict ergodicity and transformations of the torus. Amer. J. Math.83 (1961), 573–601], we get the same result for a large class of iterated skew products. Additionally we prove a multiplicative ergodic theorem for functions taking values in the upper unipotent group. Finally we characterize limits of Tn⋆μ for some skew product transformations with expansive fibers. All results are presented in terms of twisting and weak twisting, properties that strengthen unique ergodicity in a way analogous to that in which mixing and weak mixing strengthen ergodicity for measure-preserving systems.</description><subject>Affine transformations</subject><subject>Density</subject><subject>Dynamical systems</subject><subject>Ergodic processes</subject><subject>Expansion</subject><subject>Mathematical analysis</subject><subject>Theorems</subject><subject>Transformations</subject><subject>Twisting</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwNviyctqppk02aOUWoWCB_UcstlsSd0_bbJB_PZmaUFQnMvAvN-bGR4h10DvgIK4f6WAjEkugKaaSzwhE8B5kSOCOCWTUc5H_ZxchLBNDAPBJ2S13EdXuTB4V8bB9V3W11lw3SY22met1SF6G7I071zT6s7VfVOFTHdVFj7sZ7bzfRXNEC7JWa2bYK-OfUreH5dvi6d8_bJ6Xjysc8MQhxxoTaURwLiUjCHVwhZYW2MrRKmF4KVhoHlJS8ZLZkFKMauskbZgqIu5ZFNye9ibDu-jDYNqXTC2aXRn-xgUcARE5MgTevML3fbRd-k7VVA242MyCYIDZHwfgre12nnXav-lgKoxWfUn2eRhR49uS--qjf3Z_L_rG9FleeQ</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>POLO, FABRIZIO</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201112</creationdate><title>Equidistribution of singular measures on nilmanifolds and skew products</title><author>POLO, FABRIZIO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-10f08c7135883340a7e94feced448a775bc31a5b0b35b3e18872dec8e934a9683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Affine transformations</topic><topic>Density</topic><topic>Dynamical systems</topic><topic>Ergodic processes</topic><topic>Expansion</topic><topic>Mathematical analysis</topic><topic>Theorems</topic><topic>Transformations</topic><topic>Twisting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>POLO, FABRIZIO</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>POLO, FABRIZIO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equidistribution of singular measures on nilmanifolds and skew products</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2011-12</date><risdate>2011</risdate><volume>31</volume><issue>6</issue><spage>1785</spage><epage>1817</epage><pages>1785-1817</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We prove that for a minimal rotation T on a two-step nilmanifold and any measure μ, the push-forward Tn⋆μ of μ under Tn tends toward Haar measure if and only if μ projects to Haar measure on the maximal torus factor. For an arbitrary nilmanifold we get the same result along a sequence of uniform density one. These results strengthen Parry’s result [Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math.91 (1968), 757–771] that such systems are uniquely ergodic. Extending the work of Furstenberg [Strict ergodicity and transformations of the torus. Amer. J. Math.83 (1961), 573–601], we get the same result for a large class of iterated skew products. Additionally we prove a multiplicative ergodic theorem for functions taking values in the upper unipotent group. Finally we characterize limits of Tn⋆μ for some skew product transformations with expansive fibers. All results are presented in terms of twisting and weak twisting, properties that strengthen unique ergodicity in a way analogous to that in which mixing and weak mixing strengthen ergodicity for measure-preserving systems.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0143385710000684</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2011-12, Vol.31 (6), p.1785-1817 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_miscellaneous_1541444545 |
source | Cambridge University Press Journals Complete |
subjects | Affine transformations Density Dynamical systems Ergodic processes Expansion Mathematical analysis Theorems Transformations Twisting |
title | Equidistribution of singular measures on nilmanifolds and skew products |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equidistribution%20of%20singular%20measures%20on%20nilmanifolds%20and%20skew%20products&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=POLO,%20FABRIZIO&rft.date=2011-12&rft.volume=31&rft.issue=6&rft.spage=1785&rft.epage=1817&rft.pages=1785-1817&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385710000684&rft_dat=%3Cproquest_cross%3E1541444545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903254417&rft_id=info:pmid/&rft_cupid=10_1017_S0143385710000684&rfr_iscdi=true |