Equidistribution of singular measures on nilmanifolds and skew products

We prove that for a minimal rotation T on a two-step nilmanifold and any measure μ, the push-forward Tn⋆μ of μ under Tn tends toward Haar measure if and only if μ projects to Haar measure on the maximal torus factor. For an arbitrary nilmanifold we get the same result along a sequence of uniform den...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2011-12, Vol.31 (6), p.1785-1817
1. Verfasser: POLO, FABRIZIO
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that for a minimal rotation T on a two-step nilmanifold and any measure μ, the push-forward Tn⋆μ of μ under Tn tends toward Haar measure if and only if μ projects to Haar measure on the maximal torus factor. For an arbitrary nilmanifold we get the same result along a sequence of uniform density one. These results strengthen Parry’s result [Ergodic properties of affine transformations and flows on nilmanifolds. Amer. J. Math.91 (1968), 757–771] that such systems are uniquely ergodic. Extending the work of Furstenberg [Strict ergodicity and transformations of the torus. Amer. J. Math.83 (1961), 573–601], we get the same result for a large class of iterated skew products. Additionally we prove a multiplicative ergodic theorem for functions taking values in the upper unipotent group. Finally we characterize limits of Tn⋆μ for some skew product transformations with expansive fibers. All results are presented in terms of twisting and weak twisting, properties that strengthen unique ergodicity in a way analogous to that in which mixing and weak mixing strengthen ergodicity for measure-preserving systems.
ISSN:0143-3857
1469-4417
DOI:10.1017/S0143385710000684