Dynamic Population Structure based PSO with Granular Computing for Unified Multiple Linear Regression

Unified Multiple Linear Regression (UMLR) is a nonlinear programming model that unifies all kind of multiple linear regression models, such as Principal Components Regression, Ridge Regression, Robust Regression and constrained regression. Although, UMLR has exhibited excellent performances in some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information Technology Journal 2013, Vol.12 (24), p.8430-8434
1. Verfasser: Su-Fen, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8434
container_issue 24
container_start_page 8430
container_title Information Technology Journal
container_volume 12
creator Su-Fen, Chen
description Unified Multiple Linear Regression (UMLR) is a nonlinear programming model that unifies all kind of multiple linear regression models, such as Principal Components Regression, Ridge Regression, Robust Regression and constrained regression. Although, UMLR has exhibited excellent performances in some real applications, the optimization procedure is not satisfying yet. This study proposes a novel Granular Computing-Particle Swarm Optimization (Grc-PSO) algorithm by introducing granular computing into standard PSO which is used for the optimization of the UMLR model. The experimental results show that the solution got by Grc-PSO algorithm is much better to the real situation than other state-of-art algorithms.
doi_str_mv 10.3923/itj.2013.8430.8434
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541442912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541442912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2394-b1e9816c14cacdb13fcd1b52b89d61a7a9b168e8630a0efab37e8820b35c11713</originalsourceid><addsrcrecordid>eNo9kL1OwzAYRS0EEqXwAkweWVL82U7ijKhAQSpqRels2Y5TXOUP2xHq25MIxHLvHY7ucBC6BbJgBWX3Lh4XlABbCM7IFPwMzUAATdKMZ-f_m4lLdBXCkZA0TwFmyD6eWtU4g7ddP9Qquq7Fu-gHEwdvsVbBlni72-BvFz_xyqt2hDxedk0_RNcecNV5vG9d5Ububaij62uL1661I_VuD96GMF5eo4tK1cHe_PUc7Z-fPpYvyXqzel0-rBNDWcETDbYQkBngRplSA6tMCTqlWhRlBipXhYZMWJExooitlGa5FYISzVIDkAObo7vf3953X4MNUTYuGFvXqrXdECSkHDinBdARpb-o8V0I3lay965R_iSByMmpHJ3KyamcnE7B2Q-KQGvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541442912</pqid></control><display><type>article</type><title>Dynamic Population Structure based PSO with Granular Computing for Unified Multiple Linear Regression</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Science Alert</source><creator>Su-Fen, Chen</creator><creatorcontrib>Su-Fen, Chen</creatorcontrib><description>Unified Multiple Linear Regression (UMLR) is a nonlinear programming model that unifies all kind of multiple linear regression models, such as Principal Components Regression, Ridge Regression, Robust Regression and constrained regression. Although, UMLR has exhibited excellent performances in some real applications, the optimization procedure is not satisfying yet. This study proposes a novel Granular Computing-Particle Swarm Optimization (Grc-PSO) algorithm by introducing granular computing into standard PSO which is used for the optimization of the UMLR model. The experimental results show that the solution got by Grc-PSO algorithm is much better to the real situation than other state-of-art algorithms.</description><identifier>ISSN: 1812-5638</identifier><identifier>EISSN: 1812-5646</identifier><identifier>DOI: 10.3923/itj.2013.8430.8434</identifier><language>eng</language><subject>Algorithms ; Computation ; Mathematical models ; Nonlinear programming ; Optimization ; Regression ; Ridges</subject><ispartof>Information Technology Journal, 2013, Vol.12 (24), p.8430-8434</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2394-b1e9816c14cacdb13fcd1b52b89d61a7a9b168e8630a0efab37e8820b35c11713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Su-Fen, Chen</creatorcontrib><title>Dynamic Population Structure based PSO with Granular Computing for Unified Multiple Linear Regression</title><title>Information Technology Journal</title><description>Unified Multiple Linear Regression (UMLR) is a nonlinear programming model that unifies all kind of multiple linear regression models, such as Principal Components Regression, Ridge Regression, Robust Regression and constrained regression. Although, UMLR has exhibited excellent performances in some real applications, the optimization procedure is not satisfying yet. This study proposes a novel Granular Computing-Particle Swarm Optimization (Grc-PSO) algorithm by introducing granular computing into standard PSO which is used for the optimization of the UMLR model. The experimental results show that the solution got by Grc-PSO algorithm is much better to the real situation than other state-of-art algorithms.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Mathematical models</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Regression</subject><subject>Ridges</subject><issn>1812-5638</issn><issn>1812-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAYRS0EEqXwAkweWVL82U7ijKhAQSpqRels2Y5TXOUP2xHq25MIxHLvHY7ucBC6BbJgBWX3Lh4XlABbCM7IFPwMzUAATdKMZ-f_m4lLdBXCkZA0TwFmyD6eWtU4g7ddP9Qquq7Fu-gHEwdvsVbBlni72-BvFz_xyqt2hDxedk0_RNcecNV5vG9d5Ububaij62uL1661I_VuD96GMF5eo4tK1cHe_PUc7Z-fPpYvyXqzel0-rBNDWcETDbYQkBngRplSA6tMCTqlWhRlBipXhYZMWJExooitlGa5FYISzVIDkAObo7vf3953X4MNUTYuGFvXqrXdECSkHDinBdARpb-o8V0I3lay965R_iSByMmpHJ3KyamcnE7B2Q-KQGvY</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Su-Fen, Chen</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2013</creationdate><title>Dynamic Population Structure based PSO with Granular Computing for Unified Multiple Linear Regression</title><author>Su-Fen, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2394-b1e9816c14cacdb13fcd1b52b89d61a7a9b168e8630a0efab37e8820b35c11713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Mathematical models</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Regression</topic><topic>Ridges</topic><toplevel>online_resources</toplevel><creatorcontrib>Su-Fen, Chen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information Technology Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su-Fen, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Population Structure based PSO with Granular Computing for Unified Multiple Linear Regression</atitle><jtitle>Information Technology Journal</jtitle><date>2013</date><risdate>2013</risdate><volume>12</volume><issue>24</issue><spage>8430</spage><epage>8434</epage><pages>8430-8434</pages><issn>1812-5638</issn><eissn>1812-5646</eissn><abstract>Unified Multiple Linear Regression (UMLR) is a nonlinear programming model that unifies all kind of multiple linear regression models, such as Principal Components Regression, Ridge Regression, Robust Regression and constrained regression. Although, UMLR has exhibited excellent performances in some real applications, the optimization procedure is not satisfying yet. This study proposes a novel Granular Computing-Particle Swarm Optimization (Grc-PSO) algorithm by introducing granular computing into standard PSO which is used for the optimization of the UMLR model. The experimental results show that the solution got by Grc-PSO algorithm is much better to the real situation than other state-of-art algorithms.</abstract><doi>10.3923/itj.2013.8430.8434</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1812-5638
ispartof Information Technology Journal, 2013, Vol.12 (24), p.8430-8434
issn 1812-5638
1812-5646
language eng
recordid cdi_proquest_miscellaneous_1541442912
source EZB-FREE-00999 freely available EZB journals; Science Alert
subjects Algorithms
Computation
Mathematical models
Nonlinear programming
Optimization
Regression
Ridges
title Dynamic Population Structure based PSO with Granular Computing for Unified Multiple Linear Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Population%20Structure%20based%20PSO%20with%20Granular%20Computing%20for%20Unified%20Multiple%20Linear%20Regression&rft.jtitle=Information%20Technology%20Journal&rft.au=Su-Fen,%20Chen&rft.date=2013&rft.volume=12&rft.issue=24&rft.spage=8430&rft.epage=8434&rft.pages=8430-8434&rft.issn=1812-5638&rft.eissn=1812-5646&rft_id=info:doi/10.3923/itj.2013.8430.8434&rft_dat=%3Cproquest_cross%3E1541442912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541442912&rft_id=info:pmid/&rfr_iscdi=true