Dynamic Population Structure based PSO with Granular Computing for Unified Multiple Linear Regression
Unified Multiple Linear Regression (UMLR) is a nonlinear programming model that unifies all kind of multiple linear regression models, such as Principal Components Regression, Ridge Regression, Robust Regression and constrained regression. Although, UMLR has exhibited excellent performances in some...
Gespeichert in:
Veröffentlicht in: | Information Technology Journal 2013, Vol.12 (24), p.8430-8434 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8434 |
---|---|
container_issue | 24 |
container_start_page | 8430 |
container_title | Information Technology Journal |
container_volume | 12 |
creator | Su-Fen, Chen |
description | Unified Multiple Linear Regression (UMLR) is a nonlinear programming model that unifies all kind of multiple linear regression models, such as Principal Components Regression, Ridge Regression, Robust Regression and constrained regression. Although, UMLR has exhibited excellent performances in some real applications, the optimization procedure is not satisfying yet. This study proposes a novel Granular Computing-Particle Swarm Optimization (Grc-PSO) algorithm by introducing granular computing into standard PSO which is used for the optimization of the UMLR model. The experimental results show that the solution got by Grc-PSO algorithm is much better to the real situation than other state-of-art algorithms. |
doi_str_mv | 10.3923/itj.2013.8430.8434 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541442912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541442912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2394-b1e9816c14cacdb13fcd1b52b89d61a7a9b168e8630a0efab37e8820b35c11713</originalsourceid><addsrcrecordid>eNo9kL1OwzAYRS0EEqXwAkweWVL82U7ijKhAQSpqRels2Y5TXOUP2xHq25MIxHLvHY7ucBC6BbJgBWX3Lh4XlABbCM7IFPwMzUAATdKMZ-f_m4lLdBXCkZA0TwFmyD6eWtU4g7ddP9Qquq7Fu-gHEwdvsVbBlni72-BvFz_xyqt2hDxedk0_RNcecNV5vG9d5Ububaij62uL1661I_VuD96GMF5eo4tK1cHe_PUc7Z-fPpYvyXqzel0-rBNDWcETDbYQkBngRplSA6tMCTqlWhRlBipXhYZMWJExooitlGa5FYISzVIDkAObo7vf3953X4MNUTYuGFvXqrXdECSkHDinBdARpb-o8V0I3lay965R_iSByMmpHJ3KyamcnE7B2Q-KQGvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541442912</pqid></control><display><type>article</type><title>Dynamic Population Structure based PSO with Granular Computing for Unified Multiple Linear Regression</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Science Alert</source><creator>Su-Fen, Chen</creator><creatorcontrib>Su-Fen, Chen</creatorcontrib><description>Unified Multiple Linear Regression (UMLR) is a nonlinear programming model that unifies all kind of multiple linear regression models, such as Principal Components Regression, Ridge Regression, Robust Regression and constrained regression. Although, UMLR has exhibited excellent performances in some real applications, the optimization procedure is not satisfying yet. This study proposes a novel Granular Computing-Particle Swarm Optimization (Grc-PSO) algorithm by introducing granular computing into standard PSO which is used for the optimization of the UMLR model. The experimental results show that the solution got by Grc-PSO algorithm is much better to the real situation than other state-of-art algorithms.</description><identifier>ISSN: 1812-5638</identifier><identifier>EISSN: 1812-5646</identifier><identifier>DOI: 10.3923/itj.2013.8430.8434</identifier><language>eng</language><subject>Algorithms ; Computation ; Mathematical models ; Nonlinear programming ; Optimization ; Regression ; Ridges</subject><ispartof>Information Technology Journal, 2013, Vol.12 (24), p.8430-8434</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2394-b1e9816c14cacdb13fcd1b52b89d61a7a9b168e8630a0efab37e8820b35c11713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Su-Fen, Chen</creatorcontrib><title>Dynamic Population Structure based PSO with Granular Computing for Unified Multiple Linear Regression</title><title>Information Technology Journal</title><description>Unified Multiple Linear Regression (UMLR) is a nonlinear programming model that unifies all kind of multiple linear regression models, such as Principal Components Regression, Ridge Regression, Robust Regression and constrained regression. Although, UMLR has exhibited excellent performances in some real applications, the optimization procedure is not satisfying yet. This study proposes a novel Granular Computing-Particle Swarm Optimization (Grc-PSO) algorithm by introducing granular computing into standard PSO which is used for the optimization of the UMLR model. The experimental results show that the solution got by Grc-PSO algorithm is much better to the real situation than other state-of-art algorithms.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Mathematical models</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Regression</subject><subject>Ridges</subject><issn>1812-5638</issn><issn>1812-5646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kL1OwzAYRS0EEqXwAkweWVL82U7ijKhAQSpqRels2Y5TXOUP2xHq25MIxHLvHY7ucBC6BbJgBWX3Lh4XlABbCM7IFPwMzUAATdKMZ-f_m4lLdBXCkZA0TwFmyD6eWtU4g7ddP9Qquq7Fu-gHEwdvsVbBlni72-BvFz_xyqt2hDxedk0_RNcecNV5vG9d5Ububaij62uL1661I_VuD96GMF5eo4tK1cHe_PUc7Z-fPpYvyXqzel0-rBNDWcETDbYQkBngRplSA6tMCTqlWhRlBipXhYZMWJExooitlGa5FYISzVIDkAObo7vf3953X4MNUTYuGFvXqrXdECSkHDinBdARpb-o8V0I3lay965R_iSByMmpHJ3KyamcnE7B2Q-KQGvY</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Su-Fen, Chen</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2013</creationdate><title>Dynamic Population Structure based PSO with Granular Computing for Unified Multiple Linear Regression</title><author>Su-Fen, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2394-b1e9816c14cacdb13fcd1b52b89d61a7a9b168e8630a0efab37e8820b35c11713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Mathematical models</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Regression</topic><topic>Ridges</topic><toplevel>online_resources</toplevel><creatorcontrib>Su-Fen, Chen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information Technology Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su-Fen, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Population Structure based PSO with Granular Computing for Unified Multiple Linear Regression</atitle><jtitle>Information Technology Journal</jtitle><date>2013</date><risdate>2013</risdate><volume>12</volume><issue>24</issue><spage>8430</spage><epage>8434</epage><pages>8430-8434</pages><issn>1812-5638</issn><eissn>1812-5646</eissn><abstract>Unified Multiple Linear Regression (UMLR) is a nonlinear programming model that unifies all kind of multiple linear regression models, such as Principal Components Regression, Ridge Regression, Robust Regression and constrained regression. Although, UMLR has exhibited excellent performances in some real applications, the optimization procedure is not satisfying yet. This study proposes a novel Granular Computing-Particle Swarm Optimization (Grc-PSO) algorithm by introducing granular computing into standard PSO which is used for the optimization of the UMLR model. The experimental results show that the solution got by Grc-PSO algorithm is much better to the real situation than other state-of-art algorithms.</abstract><doi>10.3923/itj.2013.8430.8434</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1812-5638 |
ispartof | Information Technology Journal, 2013, Vol.12 (24), p.8430-8434 |
issn | 1812-5638 1812-5646 |
language | eng |
recordid | cdi_proquest_miscellaneous_1541442912 |
source | EZB-FREE-00999 freely available EZB journals; Science Alert |
subjects | Algorithms Computation Mathematical models Nonlinear programming Optimization Regression Ridges |
title | Dynamic Population Structure based PSO with Granular Computing for Unified Multiple Linear Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Population%20Structure%20based%20PSO%20with%20Granular%20Computing%20for%20Unified%20Multiple%20Linear%20Regression&rft.jtitle=Information%20Technology%20Journal&rft.au=Su-Fen,%20Chen&rft.date=2013&rft.volume=12&rft.issue=24&rft.spage=8430&rft.epage=8434&rft.pages=8430-8434&rft.issn=1812-5638&rft.eissn=1812-5646&rft_id=info:doi/10.3923/itj.2013.8430.8434&rft_dat=%3Cproquest_cross%3E1541442912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541442912&rft_id=info:pmid/&rfr_iscdi=true |