Dynamic Population Structure based PSO with Granular Computing for Unified Multiple Linear Regression

Unified Multiple Linear Regression (UMLR) is a nonlinear programming model that unifies all kind of multiple linear regression models, such as Principal Components Regression, Ridge Regression, Robust Regression and constrained regression. Although, UMLR has exhibited excellent performances in some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information Technology Journal 2013, Vol.12 (24), p.8430-8434
1. Verfasser: Su-Fen, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Unified Multiple Linear Regression (UMLR) is a nonlinear programming model that unifies all kind of multiple linear regression models, such as Principal Components Regression, Ridge Regression, Robust Regression and constrained regression. Although, UMLR has exhibited excellent performances in some real applications, the optimization procedure is not satisfying yet. This study proposes a novel Granular Computing-Particle Swarm Optimization (Grc-PSO) algorithm by introducing granular computing into standard PSO which is used for the optimization of the UMLR model. The experimental results show that the solution got by Grc-PSO algorithm is much better to the real situation than other state-of-art algorithms.
ISSN:1812-5638
1812-5646
DOI:10.3923/itj.2013.8430.8434