Identification of Nonlinear System Based on ANFIS with Hybrid Fuzzy Clustering

In this study, Hybrid fuzzy clustering method , which is proposed by Niros and Tsekouras recently, is used to generate an initial TSK fuzzy model with the appropriate cluster centers number and performance index by adjusting the radius of a cluster center. To acquire a TSK fuzzy model with perfect p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information Technology Journal 2013, Vol.12 (24), p.8349-8353
Hauptverfasser: Liao, Zhigao, Zhang, Fengyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, Hybrid fuzzy clustering method , which is proposed by Niros and Tsekouras recently, is used to generate an initial TSK fuzzy model with the appropriate cluster centers number and performance index by adjusting the radius of a cluster center. To acquire a TSK fuzzy model with perfect performance, Adaptive neuro-fuzzy inference system is combined to fine tune the premise parameters and consequent parameters by means of Levenberg-Marquardt algorithm. A simulation to a dynamic nonlinear system demonstrates the effective of this method.
ISSN:1812-5638
1812-5646
DOI:10.3923/itj.2013.8349.8353