Polypropylene filled with kaolinite-based conductive powders

Antimony doped tin oxide nanoparticles (Sb–SnO2) were uniformly coated on the surfaces of rod-/flake-like kaolinites (Kaol) to synthesize kaolinite-based conductive powders (Sb–SnO2)Kaol, which was then added into polypropylene (PP) matrix to produce conductive (Sb–SnO2)Kaol–PP nanocomposites. The e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied clay science 2013-10, Vol.83-84, p.122-128
Hauptverfasser: Hu, Peiwei, Yang, Huaming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antimony doped tin oxide nanoparticles (Sb–SnO2) were uniformly coated on the surfaces of rod-/flake-like kaolinites (Kaol) to synthesize kaolinite-based conductive powders (Sb–SnO2)Kaol, which was then added into polypropylene (PP) matrix to produce conductive (Sb–SnO2)Kaol–PP nanocomposites. The effects of (Sb–SnO2)Kaol characteristics on the volume resistivity and mechanical properties of (Sb–SnO2)Kaol–PP were in detail investigated. The results indicated that surface-modified (Sb–SnO2)Kaol could improve the dispersion in PP matrix, and the as-synthesized nanocomposites showed better electrical property than that without surface modification. The volume resistivity of (Sb–SnO2)Kaol–PP reached 7.3×108Ω·cm at the (Sb–SnO2)Kaol concentration of 40%, 6–7 order of magnitude lower than that of pure PP. The as-synthesized (Sb–SnO2)Kaol–PP nanocomposites could show potential applications in the conductive fields. [Display omitted] •Rod-/flake-like kaolinites are coated with Sb–SnO2 to produce conductive powders.•Surface modification is beneficial to the well dispersion of powders in PP matrix.•The as-synthesized composites show potential applications in conductive fields.
ISSN:0169-1317
1872-9053
DOI:10.1016/j.clay.2013.08.025