Local spectral equidistribution for Siegel modular forms and applications

We study the distribution, in the space of Satake parameters, of local components of Siegel cusp forms of genus 2 and growing weight k, subject to a specific weighting which allows us to apply results concerning Bessel models and a variant of Petersson’s formula. We obtain for this family a quantita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2012-03, Vol.148 (2), p.335-384
Hauptverfasser: Kowalski, Emmanuel, Saha, Abhishek, Tsimerman, Jacob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the distribution, in the space of Satake parameters, of local components of Siegel cusp forms of genus 2 and growing weight k, subject to a specific weighting which allows us to apply results concerning Bessel models and a variant of Petersson’s formula. We obtain for this family a quantitative local equidistribution result, and derive a number of consequences. In particular, we show that the computation of the density of low-lying zeros of the spinor L-functions (for restricted test functions) gives global evidence for a well-known conjecture of Böcherer concerning the arithmetic nature of Fourier coefficients of Siegel cusp forms.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X11007391