Temporal solitons in optical microresonators
Temporal dissipative solitons in a continuous-wave laser-driven nonlinear optical microresonator were observed. The solitons were generated spontaneously when the laser frequency was tuned through the effective zero detuning point of a high- Q resonance, which led to an effective red-detuned pumping...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2014-02, Vol.8 (2), p.145-152 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 152 |
---|---|
container_issue | 2 |
container_start_page | 145 |
container_title | Nature photonics |
container_volume | 8 |
creator | Herr, T. Brasch, V. Jost, J. D. Wang, C. Y. Kondratiev, N. M. Gorodetsky, M. L. Kippenberg, T. J. |
description | Temporal dissipative solitons in a continuous-wave laser-driven nonlinear optical microresonator were observed. The solitons were generated spontaneously when the laser frequency was tuned through the effective zero detuning point of a high-
Q
resonance, which led to an effective red-detuned pumping. Transition to soliton states were characterized by discontinuous steps in the resonator transmission. The solitons were stable in the long term and their number could be controlled via pump-laser detuning. These observations are in agreement with numerical simulations and soliton theory. Operating in the single-soliton regime allows the continuous output coupling of a femtosecond pulse train directly from the microresonator. This approach enables ultrashort pulse syntheses in spectral regimes in which broadband laser-gain media and saturable absorbers are not available. In the frequency domain the single-soliton states correspond to low-noise optical frequency combs with smooth spectral envelopes, critical to applications in broadband spectroscopy, telecommunications, astronomy and low noise microwave generation.
Temporal dissipative solitons are observed in a nonlinear, high-finesse, optical microresonator driven by a continuous-wave laser. This approach enables ultrashort pulses to be generated in spectral regimes lacking broadband laser gain media and saturable absorbers, making it potentially useful for applications in broadband spectroscopy, telecommunications, astronomy and low-phase-noise microwave generation. |
doi_str_mv | 10.1038/nphoton.2013.343 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1541431684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1541431684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-97b36033b254c868c38e74b183dcc5796a370e7465107eb8d7ab13c921ff42553</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwUvHtya2cnXHqVYFQpe6jlk06xu2U3WZHvwvzelRUTwNMPj9x4zj5BroHOgqO798BHG4OclBZwjwxMyAcmqgqkKT392xc_JRUpbSjlWZTkhd2vXDyGabpZC1-aANGv9LAxja7PWtzaG6FLwZgwxXZKzxnTJXR3nlLwtH9eL52L1-vSyeFgVFpkYi0rWKChiXXJmlVAWlZOsBoUba7mshEFJsyI4UOlqtZGmBrRVCU3DSs5xSm4PuUMMnzuXRt23ybquM96FXdLAGTAEoVhGb_6g27CLPl-nQXAFDEBipuiByu-kFF2jh9j2Jn5poHpfnz7Wp_f16VxftsDBkjLq3138Ffyf5xvGp3Oz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658141173</pqid></control><display><type>article</type><title>Temporal solitons in optical microresonators</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Herr, T. ; Brasch, V. ; Jost, J. D. ; Wang, C. Y. ; Kondratiev, N. M. ; Gorodetsky, M. L. ; Kippenberg, T. J.</creator><creatorcontrib>Herr, T. ; Brasch, V. ; Jost, J. D. ; Wang, C. Y. ; Kondratiev, N. M. ; Gorodetsky, M. L. ; Kippenberg, T. J.</creatorcontrib><description>Temporal dissipative solitons in a continuous-wave laser-driven nonlinear optical microresonator were observed. The solitons were generated spontaneously when the laser frequency was tuned through the effective zero detuning point of a high-
Q
resonance, which led to an effective red-detuned pumping. Transition to soliton states were characterized by discontinuous steps in the resonator transmission. The solitons were stable in the long term and their number could be controlled via pump-laser detuning. These observations are in agreement with numerical simulations and soliton theory. Operating in the single-soliton regime allows the continuous output coupling of a femtosecond pulse train directly from the microresonator. This approach enables ultrashort pulse syntheses in spectral regimes in which broadband laser-gain media and saturable absorbers are not available. In the frequency domain the single-soliton states correspond to low-noise optical frequency combs with smooth spectral envelopes, critical to applications in broadband spectroscopy, telecommunications, astronomy and low noise microwave generation.
Temporal dissipative solitons are observed in a nonlinear, high-finesse, optical microresonator driven by a continuous-wave laser. This approach enables ultrashort pulses to be generated in spectral regimes lacking broadband laser gain media and saturable absorbers, making it potentially useful for applications in broadband spectroscopy, telecommunications, astronomy and low-phase-noise microwave generation.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/nphoton.2013.343</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1111/1112 ; 639/624/400/1118 ; 639/624/400/385 ; Applied and Technical Physics ; Astronomy ; Broadband ; Computer simulation ; Electrons ; Frequency domains ; Lasers ; Photonics ; Physics ; Quantum Physics ; Solitons ; Spectra ; Temporal logic ; Trains</subject><ispartof>Nature photonics, 2014-02, Vol.8 (2), p.145-152</ispartof><rights>Springer Nature Limited 2013</rights><rights>Copyright Nature Publishing Group Feb 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-97b36033b254c868c38e74b183dcc5796a370e7465107eb8d7ab13c921ff42553</citedby><cites>FETCH-LOGICAL-c346t-97b36033b254c868c38e74b183dcc5796a370e7465107eb8d7ab13c921ff42553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphoton.2013.343$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphoton.2013.343$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Herr, T.</creatorcontrib><creatorcontrib>Brasch, V.</creatorcontrib><creatorcontrib>Jost, J. D.</creatorcontrib><creatorcontrib>Wang, C. Y.</creatorcontrib><creatorcontrib>Kondratiev, N. M.</creatorcontrib><creatorcontrib>Gorodetsky, M. L.</creatorcontrib><creatorcontrib>Kippenberg, T. J.</creatorcontrib><title>Temporal solitons in optical microresonators</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Temporal dissipative solitons in a continuous-wave laser-driven nonlinear optical microresonator were observed. The solitons were generated spontaneously when the laser frequency was tuned through the effective zero detuning point of a high-
Q
resonance, which led to an effective red-detuned pumping. Transition to soliton states were characterized by discontinuous steps in the resonator transmission. The solitons were stable in the long term and their number could be controlled via pump-laser detuning. These observations are in agreement with numerical simulations and soliton theory. Operating in the single-soliton regime allows the continuous output coupling of a femtosecond pulse train directly from the microresonator. This approach enables ultrashort pulse syntheses in spectral regimes in which broadband laser-gain media and saturable absorbers are not available. In the frequency domain the single-soliton states correspond to low-noise optical frequency combs with smooth spectral envelopes, critical to applications in broadband spectroscopy, telecommunications, astronomy and low noise microwave generation.
Temporal dissipative solitons are observed in a nonlinear, high-finesse, optical microresonator driven by a continuous-wave laser. This approach enables ultrashort pulses to be generated in spectral regimes lacking broadband laser gain media and saturable absorbers, making it potentially useful for applications in broadband spectroscopy, telecommunications, astronomy and low-phase-noise microwave generation.</description><subject>639/624/1111/1112</subject><subject>639/624/400/1118</subject><subject>639/624/400/385</subject><subject>Applied and Technical Physics</subject><subject>Astronomy</subject><subject>Broadband</subject><subject>Computer simulation</subject><subject>Electrons</subject><subject>Frequency domains</subject><subject>Lasers</subject><subject>Photonics</subject><subject>Physics</subject><subject>Quantum Physics</subject><subject>Solitons</subject><subject>Spectra</subject><subject>Temporal logic</subject><subject>Trains</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM1LAzEQxYMoWKt3jwUvHtya2cnXHqVYFQpe6jlk06xu2U3WZHvwvzelRUTwNMPj9x4zj5BroHOgqO798BHG4OclBZwjwxMyAcmqgqkKT392xc_JRUpbSjlWZTkhd2vXDyGabpZC1-aANGv9LAxja7PWtzaG6FLwZgwxXZKzxnTJXR3nlLwtH9eL52L1-vSyeFgVFpkYi0rWKChiXXJmlVAWlZOsBoUba7mshEFJsyI4UOlqtZGmBrRVCU3DSs5xSm4PuUMMnzuXRt23ybquM96FXdLAGTAEoVhGb_6g27CLPl-nQXAFDEBipuiByu-kFF2jh9j2Jn5poHpfnz7Wp_f16VxftsDBkjLq3138Ffyf5xvGp3Oz</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Herr, T.</creator><creator>Brasch, V.</creator><creator>Jost, J. D.</creator><creator>Wang, C. Y.</creator><creator>Kondratiev, N. M.</creator><creator>Gorodetsky, M. L.</creator><creator>Kippenberg, T. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20140201</creationdate><title>Temporal solitons in optical microresonators</title><author>Herr, T. ; Brasch, V. ; Jost, J. D. ; Wang, C. Y. ; Kondratiev, N. M. ; Gorodetsky, M. L. ; Kippenberg, T. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-97b36033b254c868c38e74b183dcc5796a370e7465107eb8d7ab13c921ff42553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>639/624/1111/1112</topic><topic>639/624/400/1118</topic><topic>639/624/400/385</topic><topic>Applied and Technical Physics</topic><topic>Astronomy</topic><topic>Broadband</topic><topic>Computer simulation</topic><topic>Electrons</topic><topic>Frequency domains</topic><topic>Lasers</topic><topic>Photonics</topic><topic>Physics</topic><topic>Quantum Physics</topic><topic>Solitons</topic><topic>Spectra</topic><topic>Temporal logic</topic><topic>Trains</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herr, T.</creatorcontrib><creatorcontrib>Brasch, V.</creatorcontrib><creatorcontrib>Jost, J. D.</creatorcontrib><creatorcontrib>Wang, C. Y.</creatorcontrib><creatorcontrib>Kondratiev, N. M.</creatorcontrib><creatorcontrib>Gorodetsky, M. L.</creatorcontrib><creatorcontrib>Kippenberg, T. J.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herr, T.</au><au>Brasch, V.</au><au>Jost, J. D.</au><au>Wang, C. Y.</au><au>Kondratiev, N. M.</au><au>Gorodetsky, M. L.</au><au>Kippenberg, T. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal solitons in optical microresonators</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>8</volume><issue>2</issue><spage>145</spage><epage>152</epage><pages>145-152</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Temporal dissipative solitons in a continuous-wave laser-driven nonlinear optical microresonator were observed. The solitons were generated spontaneously when the laser frequency was tuned through the effective zero detuning point of a high-
Q
resonance, which led to an effective red-detuned pumping. Transition to soliton states were characterized by discontinuous steps in the resonator transmission. The solitons were stable in the long term and their number could be controlled via pump-laser detuning. These observations are in agreement with numerical simulations and soliton theory. Operating in the single-soliton regime allows the continuous output coupling of a femtosecond pulse train directly from the microresonator. This approach enables ultrashort pulse syntheses in spectral regimes in which broadband laser-gain media and saturable absorbers are not available. In the frequency domain the single-soliton states correspond to low-noise optical frequency combs with smooth spectral envelopes, critical to applications in broadband spectroscopy, telecommunications, astronomy and low noise microwave generation.
Temporal dissipative solitons are observed in a nonlinear, high-finesse, optical microresonator driven by a continuous-wave laser. This approach enables ultrashort pulses to be generated in spectral regimes lacking broadband laser gain media and saturable absorbers, making it potentially useful for applications in broadband spectroscopy, telecommunications, astronomy and low-phase-noise microwave generation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphoton.2013.343</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2014-02, Vol.8 (2), p.145-152 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_miscellaneous_1541431684 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/624/1111/1112 639/624/400/1118 639/624/400/385 Applied and Technical Physics Astronomy Broadband Computer simulation Electrons Frequency domains Lasers Photonics Physics Quantum Physics Solitons Spectra Temporal logic Trains |
title | Temporal solitons in optical microresonators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20solitons%20in%20optical%20microresonators&rft.jtitle=Nature%20photonics&rft.au=Herr,%20T.&rft.date=2014-02-01&rft.volume=8&rft.issue=2&rft.spage=145&rft.epage=152&rft.pages=145-152&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/nphoton.2013.343&rft_dat=%3Cproquest_cross%3E1541431684%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658141173&rft_id=info:pmid/&rfr_iscdi=true |