Temporal solitons in optical microresonators

Temporal dissipative solitons in a continuous-wave laser-driven nonlinear optical microresonator were observed. The solitons were generated spontaneously when the laser frequency was tuned through the effective zero detuning point of a high- Q resonance, which led to an effective red-detuned pumping...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2014-02, Vol.8 (2), p.145-152
Hauptverfasser: Herr, T., Brasch, V., Jost, J. D., Wang, C. Y., Kondratiev, N. M., Gorodetsky, M. L., Kippenberg, T. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Temporal dissipative solitons in a continuous-wave laser-driven nonlinear optical microresonator were observed. The solitons were generated spontaneously when the laser frequency was tuned through the effective zero detuning point of a high- Q resonance, which led to an effective red-detuned pumping. Transition to soliton states were characterized by discontinuous steps in the resonator transmission. The solitons were stable in the long term and their number could be controlled via pump-laser detuning. These observations are in agreement with numerical simulations and soliton theory. Operating in the single-soliton regime allows the continuous output coupling of a femtosecond pulse train directly from the microresonator. This approach enables ultrashort pulse syntheses in spectral regimes in which broadband laser-gain media and saturable absorbers are not available. In the frequency domain the single-soliton states correspond to low-noise optical frequency combs with smooth spectral envelopes, critical to applications in broadband spectroscopy, telecommunications, astronomy and low noise microwave generation. Temporal dissipative solitons are observed in a nonlinear, high-finesse, optical microresonator driven by a continuous-wave laser. This approach enables ultrashort pulses to be generated in spectral regimes lacking broadband laser gain media and saturable absorbers, making it potentially useful for applications in broadband spectroscopy, telecommunications, astronomy and low-phase-noise microwave generation.
ISSN:1749-4885
1749-4893
DOI:10.1038/nphoton.2013.343