Simulation Research of Feature Extraction Method Based on Nonlinear Manifold Learning

This paper deals with the study of Locally Linear Embedding (LLE) and Hessian LLE nonlinear feature extraction for high dimensional data dimension reduction. LLE and Hessian LLE algorithm which reveals the characteristics of nonlinear manifold learning were analyzed. LLE and Hessian LLE algorithm si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-02, Vol.533 (Modern Tendencies in Engineering Sciences), p.247-251
Hauptverfasser: Xie, Xiao Peng, Xiao, Hai Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the study of Locally Linear Embedding (LLE) and Hessian LLE nonlinear feature extraction for high dimensional data dimension reduction. LLE and Hessian LLE algorithm which reveals the characteristics of nonlinear manifold learning were analyzed. LLE and Hessian LLE algorithm simulation research was studied through different kinds of sample for dimensionality reduction. LLE and Hessian LLE algorithm’s classification performance was compared in accordance with MDS. The simulation experimental results show that LLE and Hessian LLE are very effective feature extraction method for nonlinear manifold learning.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.533.247