Fatigue Life Predictions of Metal Matrix Composites Using Artificial Neural Networks

In this study, fatigue life predictions for the various metal matrix composites, R ratios, notch geometries, and different temperatures have been performed by using artificial neural networks (ANN) approach. Input parameters of the model comprise various materials (M), such as particle size and volu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of metallurgy and materials 2014-03, Vol.59 (1), p.97-103
Hauptverfasser: Uygur, I, Cicek, A, Toklu, E, Kara, R, Saridemir, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, fatigue life predictions for the various metal matrix composites, R ratios, notch geometries, and different temperatures have been performed by using artificial neural networks (ANN) approach. Input parameters of the model comprise various materials (M), such as particle size and volume fraction of reinforcement, stress concentration factor (Kt), R ratio (R), peak stress (S), temperatures (T), whereas, output of the ANN model consist of number of failure cycles. ANN controller was trained with Levenberg-Marquardt (LM) learning algorithm. The tested actual data and predicted data were simulated by a computer program developed on MATLAB platform. It is shown that the model provides intimate fatigue life estimations compared with actual tested data.
ISSN:1733-3490
2300-1909
DOI:10.2478/amm-2014-0016