Ensemble Learning Based Segmentation of Metastatic Liver Tumours in Contrast-Enhanced Computed Tomography

This paper presents an ensemble learning algorithm for liver tumour segmentation from a CT volume in the form of U-Boostand extends the loss functions to improve performance. Five segmentation algorithms trained by the ensemble learning algorithm with different loss functions are compared in terms o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE transactions on information and systems 2013, Vol.E96.D (4), p.864-868
Hauptverfasser: Shimizu, Akinobu, Narihira, Takuya, Kobatake, Hidefumi, Furukawa, Daisuke, Nawano, Shigeru, Shinozaki, Kenji
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an ensemble learning algorithm for liver tumour segmentation from a CT volume in the form of U-Boostand extends the loss functions to improve performance. Five segmentation algorithms trained by the ensemble learning algorithm with different loss functions are compared in terms of error rate and Jaccard Index between the extracted regions and true ones.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.E96.D.864