On the Numbers of Products in Prefix SOPs for Interval Functions
First, this paper derives the prefix sum-of-products expression (PreSOP) and the number of products in a PreSOP for an interval function. Second, it derives Ψ(n,τp), the number of n-variable interval functions that can be represented with τp products. Finally, it shows that more than 99.9% of the n-...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2013/05/01, Vol.E96.D(5), pp.1086-1094 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | First, this paper derives the prefix sum-of-products expression (PreSOP) and the number of products in a PreSOP for an interval function. Second, it derives Ψ(n,τp), the number of n-variable interval functions that can be represented with τp products. Finally, it shows that more than 99.9% of the n-variable interval functions can be represented with $\lceil \frac{3}{2}n - 1 \rceil$ products, when n is sufficiently large. These results are useful for a fast PreSOP generator and for estimating the size of ternary content addressable memories (TCAMs) for packet classification. |
---|---|
ISSN: | 0916-8532 1745-1361 |
DOI: | 10.1587/transinf.E96.D.1086 |