On the Numbers of Products in Prefix SOPs for Interval Functions

First, this paper derives the prefix sum-of-products expression (PreSOP) and the number of products in a PreSOP for an interval function. Second, it derives Ψ(n,τp), the number of n-variable interval functions that can be represented with τp products. Finally, it shows that more than 99.9% of the n-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Information and Systems 2013/05/01, Vol.E96.D(5), pp.1086-1094
Hauptverfasser: SYAFALNI, Infall, SASAO, Tsutomu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:First, this paper derives the prefix sum-of-products expression (PreSOP) and the number of products in a PreSOP for an interval function. Second, it derives Ψ(n,τp), the number of n-variable interval functions that can be represented with τp products. Finally, it shows that more than 99.9% of the n-variable interval functions can be represented with $\lceil \frac{3}{2}n - 1 \rceil$ products, when n is sufficiently large. These results are useful for a fast PreSOP generator and for estimating the size of ternary content addressable memories (TCAMs) for packet classification.
ISSN:0916-8532
1745-1361
DOI:10.1587/transinf.E96.D.1086