Biosynthesis of Zinc Substituted Magnetite Nanoparticles with Enhanced Magnetic Properties

The magnetic moments of magnetite nanoparticles are dramatically enhanced through the addition of zinc in a microbiologically driven synthesis procedure. The particles are produced through the reduction of Fe(III)‐compounds containing Zn(II) by the iron reducing bacterium Geobacter sulfurreducens. R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2014-05, Vol.24 (17), p.2518-2529
Hauptverfasser: Byrne, James M., Coker, Victoria S., Cespedes, Eva, Wincott, Paul L., Vaughan, David J., Pattrick, Richard A. D., van der Laan, Gerrit, Arenholz, Elke, Tuna, Floriana, Bencsik, Martin, Lloyd, Jonathan R., Telling, Neil D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The magnetic moments of magnetite nanoparticles are dramatically enhanced through the addition of zinc in a microbiologically driven synthesis procedure. The particles are produced through the reduction of Fe(III)‐compounds containing Zn(II) by the iron reducing bacterium Geobacter sulfurreducens. Results indicate a significant increase in the saturation magnetization by over 50% compared to magnetite at both room and low temperatures for relatively minor quantities of zinc substitution. A maximum saturation magnetization of nearly 100 emu g−1 of sample is measured at room temperature. Analysis of the cation site ordering reveals a complex dependence on the Zn content, with the combined effect of Zn substitution of Fe3+ ions on tetrahedral sites, together with Fe2+ cation oxidation, leading to the observed magnetization enhancement for low Zn doping levels. The improved magnetic properties give superior performance in MRI applications with an MRI contrast enhancement among the largest values reported, being more than 5 times larger than a commercial contrast agent (Feridex) measured under identical conditions. The synthesis technique applied here involves an environmentally benign route and offers the potential to tune the magnetic properties of magnetic nanoparticles, with increased overall magnetization desirable for many different commercial applications. A range of zinc doped magnetite nanoparticles are produced through the reduction of zinc–iron oxyhydroxide precursors by the bacterium Geobacter sulfurreducens. These materials exhibit significant increases in saturation magnetization at low zinc concentrations in comparison to stoichiometric magnetite. The enhanced magnetic properties are tested as potential MRI contrast agents and show significant MRI contrast enhancement over a commercially available agent.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.201303230