Hybrid zinc oxide:Cu-phthalocyanine bulk-heterojunction photovoltaic device

The hybrid bulk-heterojunction layer composed of Ga-doped ZnO (GZO) and Cu-phthalocyanine (CuPC) semiconductors was prepared by the simultaneous evaporation system involving the electron-beam evaporation for the Ga-doped ZnO and the thermal evaporation for the Cu-phthalocyanine. A hybrid CuPC/CuPC:G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2014-01, Vol.4 (29), p.14956-14961
Hauptverfasser: Izaki, Masanobu, Hisamatsu, Ryo, Saito, Takamasa, Murata, Kazufumi, Sasano, Junji, Shinagawa, Tsutomu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hybrid bulk-heterojunction layer composed of Ga-doped ZnO (GZO) and Cu-phthalocyanine (CuPC) semiconductors was prepared by the simultaneous evaporation system involving the electron-beam evaporation for the Ga-doped ZnO and the thermal evaporation for the Cu-phthalocyanine. A hybrid CuPC/CuPC:GZO/n-ZnO photovoltaic device was constructed using electrodeposition of the n-ZnO layer followed by simultaneous evaporation techniques. The photo-assisted kelvin force microscopy (PKFM) measurements indicated that the increase in free carriers generated by the dissociation of excitons was induced by using the bulk-heterojunction structure due to the increase in heterointerface area. The CuPC/CuPC:GZO/n-ZnO photovoltaic device showed excellent rectification features and improved photovoltaic performance compared with the layered CuPC/n-ZnO photovoltaic device.
ISSN:2046-2069
2046-2069
DOI:10.1039/c4ra01051e