DISCONTINUOUS GALERKIN FINITE ELEMENT APPROXIMATION OF HAMILTON–JACOBI–BELLMAN EQUATIONS WITH CORDES COEFFICIENTS

We propose an hp-version discontinuous Galerkin finite element method for fully nonlinear second-order elliptic Hamilton–Jacobi–Bellman equations with Cordes coefficients. The method is proved to be consistent and stable, with convergence rates that are optimal with respect to mesh size, and subopti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on numerical analysis 2014-01, Vol.52 (2), p.993-1016
Hauptverfasser: SMEARS, IAIN, SÜLI, ENDRE
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose an hp-version discontinuous Galerkin finite element method for fully nonlinear second-order elliptic Hamilton–Jacobi–Bellman equations with Cordes coefficients. The method is proved to be consistent and stable, with convergence rates that are optimal with respect to mesh size, and suboptimal in the polynomial degree by only half an order. Numerical experiments on problems with nonsmooth solutions and strongly anisotropic diffusion coefficients illustrate the accuracy and computational efficiency of the scheme. An existence and uniqueness result for strong solutions of the fully nonlinear problem and a semismoothness result for the nonlinear operator are also provided.
ISSN:0036-1429
1095-7170
DOI:10.1137/130909536