Rapid phosphine-free synthesis of CdSe quantum dots: promoting the generation of Se precursors using a radical initiator
The replacement of phosphine containing compounds in the synthesis of II–VI quantum dots (QDs) via the ‘hot-injection’ method has received considerable attention in recent years, in particular toward scaling-up production. A key bottleneck in current approaches is the poor solubility of elemental Se...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2014-01, Vol.2 (19), p.6879-6886 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The replacement of phosphine containing compounds in the synthesis of II–VI quantum dots (QDs)
via
the ‘hot-injection’ method has received considerable attention in recent years, in particular toward scaling-up production. A key bottleneck in current approaches is the poor solubility of elemental Se in solvents such as 1-octadecene (1-ODE) or oleylamine requiring a heating temperature of 200 °C for several hours, or the introduction of additives such as alkylthiols or NaBH
4
, or replacement by SeO
2
. In the present work, we elucidate the fundamental steps in the dissolution of elemental Se in 1-ODE and oleylamine with the view of facilitating the large-scale synthesis of CdSe QDs. The main organoselenium species generated during the solubilisation of elemental Se in 1-ODE and oleylamine were identified by 1D and 2D NMR spectroscopy (
1
H,
13
C and
77
Se). Experimental evidence suggests that the rate determining step is the formation of Se radicals,
via
homolytic cleavage of the Se–Se bond, that attack the allylic proton in 1-ODE and oleylamine. Plausible reaction pathways in both systems are proposed. Finally, we demonstrate that the radical-mediated solubilisation of Se can be significantly accelerated by the addition of azobisisobutyronitrile (AIBN), a common radical initiator used in the polymer industry. In this way, a highly concentrated Se precursor was prepared. The “hot-injection” of the Se precursor into CdO containing 1-ODE solution leads to the formation of highly luminescent CdSe QDs with a well-defined cubic structure. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/C4TA00285G |