Picture-Hanging Puzzles

We show how to hang a picture by wrapping rope around n nails, making a polynomial number of twists, such that the picture falls whenever any k out of the n nails get removed, and the picture remains hanging when fewer than k nails get removed. This construction makes for some fun mathematical magic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory of computing systems 2014-05, Vol.54 (4), p.531-550
Hauptverfasser: Demaine, Erik D., Demaine, Martin L., Minsky, Yair N., Mitchell, Joseph S. B., Rivest, Ronald L., Pǎtraşcu, Mihai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show how to hang a picture by wrapping rope around n nails, making a polynomial number of twists, such that the picture falls whenever any k out of the n nails get removed, and the picture remains hanging when fewer than k nails get removed. This construction makes for some fun mathematical magic performances. More generally, we characterize the possible Boolean functions characterizing when the picture falls in terms of which nails get removed as all monotone Boolean functions. This construction requires an exponential number of twists in the worst case, but exponential complexity is almost always necessary for general functions.
ISSN:1432-4350
1433-0490
DOI:10.1007/s00224-013-9501-0