Mutations in WDR19 encoding the intraflagellar transport component IFT144 cause a broad spectrum of ciliopathies
Background An emerging number of clinically and genetically heterogeneous diseases now collectively termed ciliopathies have been connected to the dysfunction of primary cilia. We describe an 8-year-old girl with a complex phenotype that did not clearly match any familiar syndrome. Case-Diagnosis/Tr...
Gespeichert in:
Veröffentlicht in: | Pediatric nephrology (Berlin, West) West), 2014-08, Vol.29 (8), p.1451-1456 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
An emerging number of clinically and genetically heterogeneous diseases now collectively termed ciliopathies have been connected to the dysfunction of primary cilia. We describe an 8-year-old girl with a complex phenotype that did not clearly match any familiar syndrome.
Case-Diagnosis/Treatment
Hypotonia, facial dysmorphism and retardation were noted shortly after birth. Other features included short stature, mild skeletal anomalies, strabism, deafness, subdural hygroma, hepatosplenomegaly and end-stage renal failure. Renal biopsy revealed tubular atrophy, interstitial fibrosis and segmental glomerulosclerosis. After exclusion of a chromosomal abnormality by array-comparative genomic hybridization (CGH), we performed next-generation sequencing (NGS) using a customized panel that targeted 131 genes known or hypothesized to cause ciliopathies. We identified the novel homozygous
WDR19
mutation c.1483G > C (p.Gly495Arg) that affects an evolutionarily highly conserved residue in the intraflagellar transport protein IFT144, is absent from databases and is predicted to be pathogenic by all bioinformatic sources used.
Conclusion
Mutations in
WDR19
encoding the intraflagellar transport component IFT144 have recently been described in single families with the clinically overlapping skeletal ciliopathies Jeune and Sensenbrenner syndromes, combined or isolated nephronophthisis (NPHP) and retinitis pigmentosa (RP) (Senior–Loken syndrome). Our patient emphasizes the usefulness and efficiency of a comprehensive NGS panel approach in patients with unclassified ciliopathies. It further suggests that
WDR19
mutations can cause a broad spectrum of ciliopathies that extends to Jeune and Sensenbrenner syndromes, RP and renal NPHP-like phenotypes. |
---|---|
ISSN: | 0931-041X 1432-198X |
DOI: | 10.1007/s00467-014-2762-2 |