Low-grade chromosomal mosaicism in human somatic and embryonic stem cell populations

Current knowledge on chromosomal mosaicism in human cell cultures is mostly based on cytogenetic banding methods. The recent development of high-resolution full-genome analysis methods applicable to single cells is providing new insights into genetic and cellular diversity. Here we study the genetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-06, Vol.5 (1), p.4227-4227, Article 4227
Hauptverfasser: Jacobs, Kurt, Mertzanidou, Afroditi, Geens, Mieke, Thi Nguyen, Ha, Staessen, Catherine, Spits, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current knowledge on chromosomal mosaicism in human cell cultures is mostly based on cytogenetic banding methods. The recent development of high-resolution full-genome analysis methods applicable to single cells is providing new insights into genetic and cellular diversity. Here we study the genetic content of 92 individual human cells, including fibroblasts, amniocytes and embryonic stem cells (hESCs), using single-cell array-based comparative genomic hybridization (aCGH). We find that human somatic and embryonic stem cell cultures show significant fractions of cells carrying unique megabase-scale chromosomal abnormalities, forming genetic mosaics that could not have been detected by conventional cytogenetic methods. These findings are confirmed by studying seven clonal hESC sub-lines by aCGH. Furthermore, fluorescent in situ hybridisation reveals an increased instability of the subtelomeric regions in hESC as compared to somatic cells. This genetic heterogeneity may have an impact on experimental results and, in the case of hESC, on their potential clinical use. De novo copy number variations are known to occur in somatic cell populations and pluripotent stem cells. Here the authors use single-cell array comparative genomic hybridization to identify copy number variations in individual human somatic and embryonic stem cells.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms5227