Electric Field Alignment of Nanofibrillated Cellulose (NFC) in Silicone Oil: Impact on Electrical Properties

This work aims to study how the magnitude, frequency, and duration of an AC electric field affect the orientation of two kinds of nanofibrillated cellulose (NFC) dispersed in silicone oil that differ by their surface charge density and aspect ratio. In both cases, the electric field alignment occurs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2014-06, Vol.6 (12), p.9418-9425
Hauptverfasser: Kadimi, Amal, Benhamou, Karima, Ounaies, Zoubeida, Magnin, Albert, Dufresne, Alain, Kaddami, Hamid, Raihane, Mustapha
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work aims to study how the magnitude, frequency, and duration of an AC electric field affect the orientation of two kinds of nanofibrillated cellulose (NFC) dispersed in silicone oil that differ by their surface charge density and aspect ratio. In both cases, the electric field alignment occurs in two steps: first, the NFC makes a gyratory motion oriented by the electric field; second, NFC interacts with itself to form chains parallel to the electric field lines. It was also observed that NFC chains become thicker and longer when the duration of application of the electric field is increased. In-situ dielectric properties have shown that the dielectric constant of the medium increases in comparison to the randomly dispersed NFC (when no electric field is applied). The optimal parameters of alignment were found to be 5000 Vpp/mm and 10 kHz for a duration of 20 min for both kinds of NFC. The highest increase in dielectric constant was achieved with NFC oxidized for 5 min (NFC-O-5min) at the optimum conditions mentioned above.
ISSN:1944-8244
1944-8252
DOI:10.1021/am501808h