Distribution and function of TrkB receptors in the developing brain of the opossum Monodelphis domestica

ABSTRACT The expression, development pattern, spatiotemporal distribution, and function of TrkB receptors were investigated during the postnatal brain development of the opossum. Full‐length TrkB receptor expression was detectable in the newborn opossum, whereas three different short forms that are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental neurobiology (Hoboken, N.J.) N.J.), 2014-07, Vol.74 (7), p.707-722
Hauptverfasser: Bartkowska, Katarzyna, Aniszewska, Agata, Turlejski, Kris, Djavadian, Ruzanna L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The expression, development pattern, spatiotemporal distribution, and function of TrkB receptors were investigated during the postnatal brain development of the opossum. Full‐length TrkB receptor expression was detectable in the newborn opossum, whereas three different short forms that are expressed in the adult brain were almost undetectable in the newborn opossum brain. The highest level of full‐length TrkB receptor expression was observed at P35, which corresponds to the time of eye opening. We found that in different brain structures, TrkB receptors were localized in various compartments of cells. The hypothalamus was distinguished by the presence of TrkB receptors not only in cell bodies but also in the neuropil. Double immunofluroscent staining for TrkB and a marker for the identification of the cell phenotype in several brain regions such as the olfactory bulb, hippocampus, thalamus, and cerebellum showed that unlike in eutherians, in the opossum, TrkB receptors were predominantly expressed in neurons. A lack of TrkB receptors in glial cells, particularly astrocytes and oligodendrocytes, provides evidence that TrkB receptors can play a functionally different role in marsupials than in eutherians. The effects of TrkB signaling on the development of cortical progenitor cells were examined in vitro using shRNAs. Blockade of the endogenous TrkB receptor expression induced a decrease in the number of progenitor cells proliferation, whereas the number of apoptotic progenitor cells increased. These changes were statistically significant but relatively small. In contrast, TrkB signaling was strongly involved in regulation of the cortical progenitor cell differentiation process. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 707–722, 2014
ISSN:1932-8451
1932-846X
DOI:10.1002/dneu.22165