Harvest-Created Canopy Gaps Increase Species and Functional Trait Diversity of the Forest Ground-Layer Community

Biodiversity conservation within managed forests depends, in part, on management practices that restore or maintain plant community diversity and function. Because many plant communities are adapted to natural disturbances, gap-based management has potential to meet this need by using the historical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forest science 2014-04, Vol.60 (2), p.335-344
Hauptverfasser: Kern, Christel C, Montgomery, Rebecca A, Reich, Peter B, Strong, Terry F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biodiversity conservation within managed forests depends, in part, on management practices that restore or maintain plant community diversity and function. Because many plant communities are adapted to natural disturbances, gap-based management has potential to meet this need by using the historical range of variation in canopy disturbances to guide elements of harvest design. We tested this hypothesis with a well-replicated gap size experiment in a second-growth northern hardwood forest. We evaluated plant communities within and among experimental gaps of differing size, 13 years after an initial harvest. We used a resampling approach to estimate how conventional and gap-based management affect diversity partitioning and species and trait diversity of ground-layer plants. These diversity measures highlight relevant scales and function of ground-layer plants among harvest gap sizes and scenarios. Results from our field experiment showed that, at the gap-level, increasing gap size increased functional trait diversity of plants, while species diversity was higher in gaps than uncut references and maximized in medium-sized (20-30 m diameter) gaps. In harvest scenarios created by resampling our empirical data, we found that at the stand scale, increasing harvest intensity (larger gaps and greater proportion of forest in gaps) increased species richness and variability in initial bloom times, tolerance to shade, and number of life-forms in the plant community. Based on the measures of diversity and function used in our study, our results suggest that size of harvest-created gaps and proportion of forest in gaps can be manipulated to attain biodiversity goals but evaluating the regional species pool and seed sources (e.g., presence of invasives, rare species) will be important to maintain or restore conservation value.
ISSN:0015-749X
1938-3738
DOI:10.5849/forsci.13-015