Improving WSR-88D Radar QPE for Orographic Precipitation Using Profiler Observations

Quantitative precipitation estimation (QPE) in the West Coast region of the United States has been a big challenge for Weather Surveillance Radar-1988 Doppler (WSR-88D) because of severe blockages caused by the complex terrain. The majority of the heavy precipitation in the West Coast region is asso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrometeorology 2014-06, Vol.15 (3), p.1135-1151
Hauptverfasser: Qi, Youcun, Zhang, Jian, Kaney, Brian, Langston, Carrie, Howard, Kenneth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantitative precipitation estimation (QPE) in the West Coast region of the United States has been a big challenge for Weather Surveillance Radar-1988 Doppler (WSR-88D) because of severe blockages caused by the complex terrain. The majority of the heavy precipitation in the West Coast region is associated with strong moisture flux from the Pacific that interacts with the coastal mountains. Such orographic enhancement of precipitation occurs at low levels and cannot be observed well by WSR-88D because of severe blockages. Specifically, the radar beameither samples too high above the ground or misses the orographic enhancement at lower levels, or the beam broadens with range and cannot adequately resolve vertical variations of the reflectivity structure. The current study developed an algorithm that uses S-band Precipitation Profiler (S-PROF) radar observations in northern California to improve WSR-88D QPEs in the area. The profiler data are used to calculate two sets of reference vertical profiles of reflectivity (RVPRs), one for the coastal mountains and another for the Sierra Nevada. The RVPRs are then used to correct the WSR-88D QPEs in the corresponding areas. The S-PROF–based VPR correction methodology (S-PROF-VPR) has taken into account orographic processes and radar beam broadenings with range. It is tested using three heavy rain events and is found to provide significant improvements over the operational radar QPE.
ISSN:1525-755X
1525-7541
DOI:10.1175/JHM-D-13-0131.1