Improvements and artifact analysis in conductivity images using multiple internal electrodes

Electrical impedance tomography is an attractive functional imaging method. It is currently limited in resolution and sensitivity due to the complexity of the inverse problem and the safety limits of introducing current. Recently, internal electrodes have been proposed for some clinical situations s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological measurement 2014-06, Vol.35 (6), p.1125-1135
Hauptverfasser: Farooq, Adnan, Tehrani, Joubin Nasehi, McEwan, Alistair Lee, Woo, Eung Je, Oh, Tong In
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrical impedance tomography is an attractive functional imaging method. It is currently limited in resolution and sensitivity due to the complexity of the inverse problem and the safety limits of introducing current. Recently, internal electrodes have been proposed for some clinical situations such as intensive care or RF ablation. This paper addresses the research question related to the benefit of one or more internal electrodes usage since these are invasive. Internal electrodes would be able to reduce the effect of insulating boundaries such as fat and bone and provide improved internal sensitivity. We found there was a measurable benefit with increased numbers of internal electrodes in saline tanks of a cylindrical and complex shape with up to two insulating boundary gel layers modeling fat and muscle. The internal electrodes provide increased sensitivity to internal changes, thereby increasing the amplitude response and improving resolution. However, they also present an additional challenge of increasing sensitivity to position and modeling errors. In comparison with previous work that used point sources for the internal electrodes, we found that it is important to use a detailed mesh of the internal electrodes with these voxels assigned to the conductivity of the internal electrode and its associated holder. A study of different internal electrode materials found that it is optimal to use a conductivity similar to the background. In the tank with a complex shape, the additional internal electrodes provided more robustness in a ventilation model of the lungs via air filled balloons.
ISSN:0967-3334
1361-6579
DOI:10.1088/0967-3334/35/6/1125