1,2-dioctanoyl-sn-glycerol can stimulate neutrophils by different mechanisms. Evidence for a pathway that does not involve phosphorylation of the 47-kDa protein

Neutrophils treated with 1,2-dioctanoyl-sn-glycerol (DiC8) are known to release large quantities of superoxide (O2-) and to exhibit an intense phosphorylation of two proteins with molecular masses of approximately 47 and 49 kDa. In this paper, we report that O2- release from guinea pig cells stimula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1989-12, Vol.264 (34), p.20676-20682
Hauptverfasser: BADWEY, J. A, ROBINSON, J. M, HEYWORTH, P. G, CURNUTTE, J. T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neutrophils treated with 1,2-dioctanoyl-sn-glycerol (DiC8) are known to release large quantities of superoxide (O2-) and to exhibit an intense phosphorylation of two proteins with molecular masses of approximately 47 and 49 kDa. In this paper, we report that O2- release from guinea pig cells stimulated with a near optimal amount of DiC8 (2.0 microM) is markedly inhibited (greater than or equal to 70%) by antagonists of protein kinase C (i.e. 150 nM staurosporine; 200 microM 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine (H-7], whereas that from cells stimulated with an optimal amount of DiC8 (7.8 microM) is not (approximately 25% inhibition). However, staurosporine (150 nM) effectively reduced the level of phosphorylation of the 47- and the 49-kDa proteins to that observed in unstimulated cells when either amount of DiC8 (i.e. 2.0 or 7.8 microM) was utilized. Thus, neutrophils stimulated with 7.8 microM DiC8 in the presence of staurosporine release large quantities of O2- without an enhanced phosphorylation of the 47- and the 49-kDa proteins. In contrast, these antagonists of protein kinase C effectively blocked O2- release from neutrophils stimulated with an optimal amount of phorbol 12-myristate 13-acetate (PMA), and the percentage of inhibition was not affected by increasing the concentration of PMA 160-fold. These data show that DiC8 and PMA, both activators of protein kinase C, can have distinct effects on O2- release by neutrophils. Moreover, they suggest that DiC8 (or a metabolite) under certain circumstances may function in a stimulatory pathway for O2- release that is independent of protein kinase C. Differences in the morphology of neutrophils stimulated with PMA and DiC8 are presented. Ancillary data on human neutrophils are also provided.
ISSN:0021-9258
1083-351X