Arsenite inhibits two steps in the ubiquitin-dependent proteolytic pathway

Eukaryotic cells possess a multienzyme ATP-dependent proteolytic pathway in which the small, highly conserved protein ubiquitin (Ub) acts as a cofactor. In this pathway, formation of a covalent Ub-substrate conjugate precedes ATP-dependent degradation of the substrate. Inorganic arsenite (AsO2−) inh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1989-11, Vol.264 (32), p.19245-19252
Hauptverfasser: Klemperer, N S, Pickart, C M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Eukaryotic cells possess a multienzyme ATP-dependent proteolytic pathway in which the small, highly conserved protein ubiquitin (Ub) acts as a cofactor. In this pathway, formation of a covalent Ub-substrate conjugate precedes ATP-dependent degradation of the substrate. Inorganic arsenite (AsO2−) inhibited Ub-dependent protein degradation in a concentration-dependent fashion, both in intact rabbit reticulocytes and in a reticulocyte lysate (fraction II). Concentrations of arsenite causing half-maximal inhibition in fraction II varied with the substrate, ranging from 0.025 mM (bovine α-lactalbumin) to 3.3 mM (reduced/carboxymethylated bovine serum albumin). Inhibition was rapidly reversed upon addition of dithiothreitol. Arsenite inhibited the Ub-dependent proteolytic pathway at one or both of two steps, depending on the substrate. 1) Proteins with acidic amino termini must be amino terminally arginylated, in a tRNA-dependent reaction, prior to becoming conjugated to Ub (Ferber, S., and Ciechanover, A. (1987) Nature 326, 808–811). Arsenite inhibited substrate arginylation, and therefore also inhibited Ub conjugation. The inhibited species appeared to be arginyl aminoacyl-tRNA transferase, since arsenite was without strong effect on the rate or extent of arginyl-tRNA formation in fraction II, yet almost completely inhibited arginine transfer from arginyl-tRNA to reduced/carboxymethylated bovine serum albumin. 2) Arsenite also inhibited Ub-substrate conjugate turnover, as shown in pulse-chase experiments. For a given substrate, degradative (protease-dependent) and Ub regenerative (isopeptidase-dependent) components of conjugate turnover were similarly inhibited by arsenite. The potency of this inhibition varied for different substrates. Monosubstituted trivalent arsenicals such as arsenite typically interact with sites containing vicinal sulfhydryl groups. Inhibition by arsenite of two steps in the Ub-dependent proteolytic pathway suggests that the relevant pathway components could possess this kind of structural/catalytic feature.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)47293-1