Interactions of currents and weakly nonlinear water waves in shallow water
Two-dimensional Boussinesq-type depth-averaged equations are derived for describing the interactions of weakly nonlinear shallow-water waves with slowly varying topography and currents. The current velocity varies appreciably within a characteristic wavelength. The effects of vorticity in the curren...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 1989-08, Vol.205 (1), p.397-419 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-dimensional Boussinesq-type depth-averaged equations are derived for describing the interactions of weakly nonlinear shallow-water waves with slowly varying topography and currents. The current velocity varies appreciably within a characteristic wavelength. The effects of vorticity in the current field are considered. The wave field is decomposed into Fourier time harmonics. A set of evolution equations for the wave amplitude functions of different harmonics is derived by adopting the parabolic approximation. Numerical solutions are obtained for shallow-water waves propagating over rip currents on a plane beach and an isolated vortex ring. Numerical results show that the wave diffraction and nonlinearity are important in the examples considered. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/S0022112089002089 |