Effect of pH-Responsive Alginate/Chitosan Multilayers Coating on Delivery Efficiency, Cellular Uptake and Biodistribution of Mesoporous Silica Nanoparticles Based Nanocarriers

Surface fuctionalization plays a crucial role in developing efficient nanoparticulate drug-delivery systems by improving their therapeutic efficacy and minimizing adverse effects. Here we propose a simple layer-by-layer self-assembly technique capable of constructing mesoporous silica nanoparticles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2014-06, Vol.6 (11), p.8447-8460
Hauptverfasser: Feng, Wei, Nie, Wei, He, Chuanglong, Zhou, Xiaojun, Chen, Liang, Qiu, Kexin, Wang, Weizhong, Yin, Zhiqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface fuctionalization plays a crucial role in developing efficient nanoparticulate drug-delivery systems by improving their therapeutic efficacy and minimizing adverse effects. Here we propose a simple layer-by-layer self-assembly technique capable of constructing mesoporous silica nanoparticles (MSNs) into a pH-responsive drug delivery system with enhanced efficacy and biocompatibility. In this system, biocompatible polyelectrolyte multilayers of alginate/chitosan were assembled on MSN’s surface to achieve pH-responsive nanocarriers. The functionalized MSNs exhibited improved blood compatibility over the bare MSNs in terms of low hemolytic and cytotoxic activity against human red blood cells. As a proof-of-concept, the anticancer drug doxorubicin (DOX) was loaded into nanocarriers to evaluate their use for the pH-responsive drug release both in vitro and in vivo. The DOX release from nanocarriers was pH dependent, and the release rate was much faster at lower pH than that of at higher pH. The in vitro evaluation on HeLa cells showed that the DOX-loaded nanocarriers provided a sustained intracellular DOX release and a prolonged DOX accumulation in the nucleus, thus resulting in a prolonged therapeutic efficacy. In addition, the pharmacokinetic and biodistribution studies in healthy rats showed that DOX-loaded nanocarriers had longer systemic circulation time and slower plasma elimination rate than free DOX. The histological results also revealed that the nanocarriers had good tissue compatibility. Thus, the biocompatible multilayers functionalized MSNs hold the substantial potential to be further developed as effective and safe drug-delivery carriers.
ISSN:1944-8244
1944-8252
DOI:10.1021/am501337s