Carrier-Free Immobilization of Lipase from Candida rugosa with Polyethyleneimines by Carboxyl-Activated Cross-Linking

Carrier-free immobilization of Candida rugosa lipase (CRL) and polymers containing primary amino groups were cross-linked using carbodiimide. To accomplish this, the free carboxyl groups of the enzyme were activated with carbodiimide-succinimide in organic medium, and then the activated proteins wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2014-05, Vol.15 (5), p.1896-1903
Hauptverfasser: VELASCO-LOZANO, Susana, LOPEZ-GALLEGO, Fernando, VAZQUEZ-DUHALT, Rafael, MATEOS-DIAZ, Juan C, GUISAN, José M, FAVELA-TORRES, Ernesto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carrier-free immobilization of Candida rugosa lipase (CRL) and polymers containing primary amino groups were cross-linked using carbodiimide. To accomplish this, the free carboxyl groups of the enzyme were activated with carbodiimide-succinimide in organic medium, and then the activated proteins were cross-linked with different polyethylenimines (PEIs). The effect of the cross-linker chain length, the amount of added bovine serum albumin (BSA), and carbodiimide concentration on the catalytic properties of resulting cross-linked enzyme aggregates (CLEAs) was investigated. The CLEAs’ size, shape, specific activity, activity recovery, thermostability and enantioselectivity significantly varied according to the preparation procedure. The highest thermostable CRL-CLEA preparation was obtained with 1.3 kDa polyethyleneimine as cross-linker, 10 mg of BSA and 28 mM of carbodiimide. This preparation is 1.3-fold more active and thermostable than CLEAs prepared by the traditional method of amino cross-linking with glutaraldehyde, and retains 60% of residual activity after 22 h at 50 °C. Additionally, the CRL-CLEA preparation showed an enantioselectivity of 91% enantiomeric excess (ee). This immobilization procedure provides an alternative strategy for CLEA production, particularly for enzymes where the traditional method of cross-linking via lysine residues leads to enzyme inactivation.
ISSN:1525-7797
1526-4602
DOI:10.1021/bm500333v