Design of Starch-graft-PEI Polymers: An Effective and Biodegradable Gene Delivery Platform
Starch and starch derivatives are widely utilized pharmaceutical excipients. The concept of this study was to make use of starch as a biodegradable backbone and to modify it with low-toxic, but poor transfecting low molecular weight polyethylenimine (PEI) in order to achieve better transfection effi...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2014-05, Vol.15 (5), p.1753-1761 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Starch and starch derivatives are widely utilized pharmaceutical excipients. The concept of this study was to make use of starch as a biodegradable backbone and to modify it with low-toxic, but poor transfecting low molecular weight polyethylenimine (PEI) in order to achieve better transfection efficacy while maintaining enzymatic degradability. A sufficiently controllable conjugation could be achieved via a water-soluble intermediate of oxidized starch and an optimized reaction protocol. Systematic variation of MW fraction of the starch backbone and the amount of cationic side chains (0.8 kDa bPEI) yielded a series of starch-graft-PEI copolymers. Following purification and chemical characterization, nanoscale complexes with plasmid DNA were generated and studied regarding cytotoxicity and transfection efficacy. The optimal starch-graft-PEI polymers consisted of >100 kDa MW starch and contained 30% (wt) of PEI, showing similar transfection levels as 25 kDa bPEI, and being less cytotoxic and enzymatically biodegradable. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/bm500128k |