Identifying structural determinants of potency for analogs of apelin-13: Integration of C-terminal truncation with structure–activity
Apelin peptides function as endogenous ligands of the APJ receptor and have been implicated in a number of important biological processes. While several apelinergic peptides have been reported, apelin-13 (Glu-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe) remains the most commonly studied and repo...
Gespeichert in:
Veröffentlicht in: | Bioorganic & medicinal chemistry 2014-06, Vol.22 (11), p.2992-2997 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Apelin peptides function as endogenous ligands of the APJ receptor and have been implicated in a number of important biological processes. While several apelinergic peptides have been reported, apelin-13 (Glu-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe) remains the most commonly studied and reported ligand of APJ. This study examines the effect of C-terminal peptide truncations and comprehensive structure–activity relationship (SAR) for a series of analogs based on apelin-13 in an attempt to develop more potent and stable analogs. C-terminal truncation studies identified apelin-13 (N-acetyl 2–11) amide (9) as a potent agonist (EC50=4.4nM). Comprehensive SAR studies also determined that Arg-2, Leu-5, Lys-8, Met-11, were key positions for determining agonist potency, whereas the hydrophobic volume of Lys-8 was a specific determinate of activity. Plasma stability studies on the truncated 10-mer peptide 28 (EC50=33nM) indicated the primary sites of cleavage occurred between Nle-3 and Leu-4 and also between Ala-5 and Ala-6. These new ligands represent the shortest known apelin peptides with good functional potency. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2014.04.001 |