Impaired osteogenic differentiation of mesenchymal stem cells derived from bone marrow of patients with lower-risk myelodysplastic syndromes

The pathogenesis of myelodysplastic syndromes (MDS) has not been completely understood, and insufficiency of the hematopoietic microenvironment can be an important factor. Mesenchymal stem cells (MSCs) and osteoblasts are key components of the hematopoietic microenvironment. Here, we measured the ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tumor biology 2014-05, Vol.35 (5), p.4307-4316
Hauptverfasser: Fei, Chengming, Zhao, Youshan, Gu, Shucheng, Guo, Juan, Zhang, Xi, Li, Xiao, Chang, Chunkang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pathogenesis of myelodysplastic syndromes (MDS) has not been completely understood, and insufficiency of the hematopoietic microenvironment can be an important factor. Mesenchymal stem cells (MSCs) and osteoblasts are key components of the hematopoietic microenvironment. Here, we measured the expression of multiple osteogenic genes in 58 MSCs from MDS patients with different disease stages and subtypes by real-time PCR and compared the osteogenic differentiation of MSCs from 20 MDS patients with those of MSCs from eight normal controls quantitatively and dynamically. The mRNA level of Osterix and RUNX2, two key factors involved in the early differentiation process toward osteoblasts, was significantly reduced in undifferentiated MSCs from lower-risk MDS. After osteogenic induction, lower-risk MDS showed lower alkaline phosphatase activity, less intense alizarin red S staining, and lower gene expression of osteogenic differentiation markers; however, higher-risk MDS was normal. Finally, in bone marrow biopsy, the number of osteoblasts was significantly decreased in lower-risk MDS. These results indicate that MSCs from lower-risk MDS have impaired osteogenic differentiation functions, suggesting their insufficient stromal support in MDS.
ISSN:1010-4283
1423-0380
DOI:10.1007/s13277-013-1565-6