A modular, computer-controlled system for olfactory stimulation in the MRI environment

Although the cerebral networks involved in sensory perception are of general interest in neuroscience, registration of the effects of olfactory stimulation, especially in a magnetic resonance imaging (MRI) environment, presents particular problems and constraints. This article presents details of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Behavior Research Methods 2014-03, Vol.46 (1), p.178-184
Hauptverfasser: Andrieu, Patrice, Bonnans, Vincent, Meneses, Jaime, Millot, Jean-Louis, Moulin, Thierry, Gharbi, Tijani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although the cerebral networks involved in sensory perception are of general interest in neuroscience, registration of the effects of olfactory stimulation, especially in a magnetic resonance imaging (MRI) environment, presents particular problems and constraints. This article presents details of a reliable and portable system for olfactory stimulation that is modular in design and based on microcontroller technology. It has the following characteristics: (1) It is under software control; (2) the presentation of olfactory stimulation can be synchronized with respiration; (3) it can be manually controlled; and (4) it is fully compatible with an MRI environment. The principle underlying this system is to direct an odor to the subject’s nostrils by switching airflow to different odor diffusers. The characteristics of this system were established using (1) ultraviolet (UV) spectroscopy, to measure its response time, and (2) gas chromatography, to measure the repeatability of odor presentation in terms of gas concentration. A response time of 200 ± 25 ms was obtained for the system, and the standard deviations of the gas concentration delivered during stimulation ranged from 1.5% to 22%, depending on the odor, the airflow, and the dilution of the odor used. Since it is portable, controlled by software, and reliable, on the basis of the results we obtained, this system will lend itself to a wide range of applications in olfactory neuroscience.
ISSN:1554-3528
1554-351X
1554-3528
DOI:10.3758/s13428-013-0362-x