Rice bran extract protects from mitochondrial dysfunction in guinea pig brains
Mitochondrial dysfunction plays a major role in the development of age-related neurodegenerative diseases and recent evidence suggests that food ingredients can improve mitochondrial function. In the current study we investigated the effects of feeding a stabilized rice bran extract (RBE) on mitocho...
Gespeichert in:
Veröffentlicht in: | Pharmacological research 2013-10, Vol.76, p.17-27 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mitochondrial dysfunction plays a major role in the development of age-related neurodegenerative diseases and recent evidence suggests that food ingredients can improve mitochondrial function. In the current study we investigated the effects of feeding a stabilized rice bran extract (RBE) on mitochondrial function in the brain of guinea pigs. Key components of the rice bran are oryzanols, tocopherols and tocotrienols, which are supposed to have beneficial effects on mitochondrial function. Concentrations of α-tocotrienol and γ-carboxyethyl hydroxychroman (CEHC) but not γ-tocotrienol were significantly elevated in brains of RBE fed animals and thus may have provided protective properties. Overall respiration and mitochondrial coupling were significantly enhanced in isolated mitochondria, which suggests improved mitochondrial function in brains of RBE fed animals. Cells isolated from brains of RBE fed animals showed significantly higher mitochondrial membrane potential and ATP levels after sodium nitroprusside (SNP) challenge indicating resistance against mitochondrial dysfunction. Experimental evidence indicated increased mitochondrial mass in guinea pig brains, e.g. enhanced citrate synthase activity, increased cardiolipin as well as respiratory chain complex I and II and TIMM levels. In addition levels of Drp1 and fis1 were also increased in brains of guinea pigs fed RBE, indicating enhanced fission events. Thus, RBE represents a potential nutraceutical for the prevention of mitochondrial dysfunction and oxidative stress in brain aging and neurodegenerative diseases. |
---|---|
ISSN: | 1043-6618 1096-1186 |
DOI: | 10.1016/j.phrs.2013.06.008 |