IFNγ and Perforin Cooperate to Control Infection and Prevent Fatal Pathology During Persistent Gammaherpesvirus Infection in Mice

Infection with murine gammaherpesvirus 68 has become an accepted model for studying the virus/host interactions with regard to gammaherpesvirus infections. Previous studies using gene‐deficient mice have revealed that neither IFNγ nor perforin is essential in controlling the outcome of infection or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of immunology 2014-06, Vol.79 (6), p.395-403
Hauptverfasser: Bartholdy, C., Høgh‐Petersen, M., Storm, P., Holst, P. J., Ørskov, C., Christensen, J. P., Thomsen, A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Infection with murine gammaherpesvirus 68 has become an accepted model for studying the virus/host interactions with regard to gammaherpesvirus infections. Previous studies using gene‐deficient mice have revealed that neither IFNγ nor perforin is essential in controlling the outcome of infection or the virus load during chronic infection in C57BL/6 mice. However, pronounced multiorgan fibrosis and splenic atrophy are observed in mice lacking IFNγ or the IFNγ receptor. To study the interplay between perforin and IFNγ in controlling the virus‐induced pathology and the viral load during chronic gammaherpesvirus infection, we infected IFNγ/perforin double‐deficient C57BL/6 mice and followed the course of infection. While absence of perforin prevented the splenic atrophy in IFNγ‐deficient mice, fibrosis did not disappear. Moreover, double‐deficient mice developed extreme splenomegaly, were unable to control the viral load and displayed chronic immune activation. Thus, IFNγ and perforin act in concert to minimize pathology and control the viral load in mice chronically infected with MHV68. Furthermore, while certain aspect of the virus‐induced pathology in IFNγ‐deficient mice may be alleviated in double‐deficient mice, other aspects are exaggerated, and the normal architecture of the spleen is completely destroyed. We believe that these findings add to the understanding of the virus/host interaction during chronic gammaherpes virus infection.
ISSN:0300-9475
1365-3083
DOI:10.1111/sji.12176