Rapid saccharification for production of cellulosic biofuels

The economical production of biofuels is hindered by the recalcitrance of lignocellulose to processing, causing high consumption of processing enzymes and impeding hydrolysis of pretreated lignocellulosic biomass. We determined the major rate-limiting factor in the hydrolysis of popping pre-treated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2014-04, Vol.158, p.239-247
Hauptverfasser: LEE, Dae-Seok, SEUNG GON WI, SOO JUNG LEE, LEE, Yoon-Gyo, KIM, Yeong-Suk, BAE, Hyeun-Jong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The economical production of biofuels is hindered by the recalcitrance of lignocellulose to processing, causing high consumption of processing enzymes and impeding hydrolysis of pretreated lignocellulosic biomass. We determined the major rate-limiting factor in the hydrolysis of popping pre-treated rice straw (PPRS) by examining cellulase adsorption to lignin and cellulose, amorphogenesis of PPRS, and re-hydrolysis. Based on the results, equivalence between enzyme loading and the open structural area of cellulose was required to significantly increase productive adsorption of cellulase and to accelerate enzymatic saccharification of PPRS. Amorphogenesis of PPRS by phosphoric acid treatment to expand open structural area of the cellulose fibers resulted in twofold higher cellulase adsorption and increased the yield of the first re-hydrolysis step from 13% to 46%. The total yield from PPRS was increased to 84% after 3h. These results provide evidence that cellulose structure is one of major effects on the enzymatic hydrolysis.
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2014.02.039