Physicochemical Aspects of Lipase B from Candida antarctica in Bicontinuous Microemulsions

Biotechnology involves applying enzymes in organic synthesis to convert non-natural substrates into enantiomerically pure products under mild reaction conditions. Non-natural substrates are often lipophilic molecules that can hardly be accessed and converted by enzymes in their natural aqueous envir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2014-03, Vol.30 (11), p.2993-3000
Hauptverfasser: Subinya, Mireia, Steudle, Anne K, Nestl, Bettina, Nebel, Bernd, Hauer, Bernhard, Stubenrauch, Cosima, Engelskirchen, Sandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biotechnology involves applying enzymes in organic synthesis to convert non-natural substrates into enantiomerically pure products under mild reaction conditions. Non-natural substrates are often lipophilic molecules that can hardly be accessed and converted by enzymes in their natural aqueous environment. Bicontinuous microemulsions provide a spongelike nanostructure with a large interfacial area between aqueous and oil domains, which makes them valuable alternative reaction media. In the present study, we introduced lipase B from Candida antarctica into a bicontinuous microemulsion of composition H2O/NaCl– n-octane–pentaethylene glycol monodecylether (C10E5). Phase behavior, partitioning studies, and pulsed-field-gradient NMR measurements revealed that the lipase is mostly adsorbed at the microemulsions interface. Phase diagrams showed a maximum in efficiency with increasing amount of lipase added to the water phase of the microemulsion. It was observed that the ratio between the mass of lipase that is introduced into the system and the mass of lipase that is located at the interface stays constant. Self-diffusion coefficients of all components showed that the presence of the lipase is not influencing the bicontinuity of the microemulsion.
ISSN:0743-7463
1520-5827
DOI:10.1021/la4042088