Flavonoids, Flavonoid Metabolites, and Phenolic Acids Inhibit Oxidative Stress in the Neuronal Cell Line HT-22 Monitored by ECIS and MTT Assay: A Comparative Study
A real-time and label-free in vitro assay based on electric cell-substrate impedance sensing (ECIS) was established, validated, and compared to an end-point MTT assay within an experimental trial addressing the cytoprotective effects of 19 different flavonoids, flavonoid metabolites, and phenolic ac...
Gespeichert in:
Veröffentlicht in: | Journal of natural products (Washington, D.C.) D.C.), 2014-03, Vol.77 (3), p.446-454 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A real-time and label-free in vitro assay based on electric cell-substrate impedance sensing (ECIS) was established, validated, and compared to an end-point MTT assay within an experimental trial addressing the cytoprotective effects of 19 different flavonoids, flavonoid metabolites, and phenolic acids and their methyl esters on the HT-22 neuronal cell line, after induction of oxidative stress with tert-butyl hydroperoxide. Among the flavonoids under study, only those with a catechol unit and an additional 4-keto group provided cytoprotection. The presence of a 2,3-double bond was not a structural prerequisite for a neuroprotective effect. In the case of the phenolics, catechol substitution was the only structural requirement for activity. The flavonoids and other phenolics with a ferulic acid substitution or a single hydroxy group showed no activity. Electrochemical characterization of all compounds via square-wave voltammetry provided a rather specific correlation between cytoprotective activity and redox potential for the active flavonoids, but not for the active phenolics with a low molecular weight. Moreover this study was used to compare label-free ECIS recordings with results of the established MTT assay. Whereas the former provides time-resolved and thus entirely unbiased information on changes of cell morphology that are unequivocally associated with cell death, the latter requires predefined exposure times and a strict causality between metabolic activity and cell death. However, MTT assays are based on standard lab equipment and provide a more economic way to higher throughput. |
---|---|
ISSN: | 0163-3864 1520-6025 |
DOI: | 10.1021/np400518k |