Communication: system-size scaling of Boltzmann and alternate Gibbs entropies

It has recurrently been proposed that the Boltzmann textbook definition of entropy S(E) = k ln Ω(E) in terms of the number of microstates Ω(E) with energy E should be replaced by the expression S(G)(E) = k ln Σ(E' < E)Ω(E') examined by Gibbs. Here, we show that SG either is equivalent t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2014-05, Vol.140 (20), p.201101-201101
Hauptverfasser: Vilar, Jose M G, Rubi, J Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 201101
container_issue 20
container_start_page 201101
container_title The Journal of chemical physics
container_volume 140
creator Vilar, Jose M G
Rubi, J Miguel
description It has recurrently been proposed that the Boltzmann textbook definition of entropy S(E) = k ln Ω(E) in terms of the number of microstates Ω(E) with energy E should be replaced by the expression S(G)(E) = k ln Σ(E' < E)Ω(E') examined by Gibbs. Here, we show that SG either is equivalent to S in the macroscopic limit or becomes independent of the energy exponentially fast as the system size increases. The resulting exponential scaling makes the realistic use of SG unfeasible and leads in general to temperatures that are inconsistent with the notions of hot and cold.
doi_str_mv 10.1063/1.4879553
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531955829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1531955829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-6716de63382f3fc7f4365b4883315ac025c13695b73294ce087a3c43a18b60403</originalsourceid><addsrcrecordid>eNpdkLtOwzAYRi0EoqUw8AIoEgsMKf59DxtU3KQiFpgtx3WQUWKX2Bno0xPUwsD0LUefjg5Cp4DngAW9gjlTsuKc7qEpYFWVUlR4H00xJlBWAosJOkrpA2MMkrBDNCFMKUy4mqLnRey6IXhrso_hukhfKbuuTH7jimRN68N7EZviNrZ505kQChNWhWmz64PJrnjwdZ0KF3If196lY3TQmDa5k93O0Nv93evisVy-PDwtbpalpUzlUkgQKycoVaShjZUNo4LXoxOlwI0dzSxQUfFaUlIx67CShlpGDahaYIbpDF1sf9d9_Bxcyrrzybq2NcHFIWngFMYeilQjev4P_YjDKN8mTYBIIRgwPlKXW8r2MaXeNXrd-870Xxqw_mmsQe8aj-zZ7nGoO7f6I3-j0m_UTXPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127664145</pqid></control><display><type>article</type><title>Communication: system-size scaling of Boltzmann and alternate Gibbs entropies</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Vilar, Jose M G ; Rubi, J Miguel</creator><creatorcontrib>Vilar, Jose M G ; Rubi, J Miguel</creatorcontrib><description>It has recurrently been proposed that the Boltzmann textbook definition of entropy S(E) = k ln Ω(E) in terms of the number of microstates Ω(E) with energy E should be replaced by the expression S(G)(E) = k ln Σ(E' &lt; E)Ω(E') examined by Gibbs. Here, we show that SG either is equivalent to S in the macroscopic limit or becomes independent of the energy exponentially fast as the system size increases. The resulting exponential scaling makes the realistic use of SG unfeasible and leads in general to temperatures that are inconsistent with the notions of hot and cold.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4879553</identifier><identifier>PMID: 24880258</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cold Temperature ; Communications systems ; Computer Simulation ; Entropy ; Hot Temperature ; Scaling ; Thermodynamics</subject><ispartof>The Journal of chemical physics, 2014-05, Vol.140 (20), p.201101-201101</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-6716de63382f3fc7f4365b4883315ac025c13695b73294ce087a3c43a18b60403</citedby><cites>FETCH-LOGICAL-c348t-6716de63382f3fc7f4365b4883315ac025c13695b73294ce087a3c43a18b60403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24880258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vilar, Jose M G</creatorcontrib><creatorcontrib>Rubi, J Miguel</creatorcontrib><title>Communication: system-size scaling of Boltzmann and alternate Gibbs entropies</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>It has recurrently been proposed that the Boltzmann textbook definition of entropy S(E) = k ln Ω(E) in terms of the number of microstates Ω(E) with energy E should be replaced by the expression S(G)(E) = k ln Σ(E' &lt; E)Ω(E') examined by Gibbs. Here, we show that SG either is equivalent to S in the macroscopic limit or becomes independent of the energy exponentially fast as the system size increases. The resulting exponential scaling makes the realistic use of SG unfeasible and leads in general to temperatures that are inconsistent with the notions of hot and cold.</description><subject>Cold Temperature</subject><subject>Communications systems</subject><subject>Computer Simulation</subject><subject>Entropy</subject><subject>Hot Temperature</subject><subject>Scaling</subject><subject>Thermodynamics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkLtOwzAYRi0EoqUw8AIoEgsMKf59DxtU3KQiFpgtx3WQUWKX2Bno0xPUwsD0LUefjg5Cp4DngAW9gjlTsuKc7qEpYFWVUlR4H00xJlBWAosJOkrpA2MMkrBDNCFMKUy4mqLnRey6IXhrso_hukhfKbuuTH7jimRN68N7EZviNrZ505kQChNWhWmz64PJrnjwdZ0KF3If196lY3TQmDa5k93O0Nv93evisVy-PDwtbpalpUzlUkgQKycoVaShjZUNo4LXoxOlwI0dzSxQUfFaUlIx67CShlpGDahaYIbpDF1sf9d9_Bxcyrrzybq2NcHFIWngFMYeilQjev4P_YjDKN8mTYBIIRgwPlKXW8r2MaXeNXrd-870Xxqw_mmsQe8aj-zZ7nGoO7f6I3-j0m_UTXPo</recordid><startdate>20140528</startdate><enddate>20140528</enddate><creator>Vilar, Jose M G</creator><creator>Rubi, J Miguel</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20140528</creationdate><title>Communication: system-size scaling of Boltzmann and alternate Gibbs entropies</title><author>Vilar, Jose M G ; Rubi, J Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-6716de63382f3fc7f4365b4883315ac025c13695b73294ce087a3c43a18b60403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cold Temperature</topic><topic>Communications systems</topic><topic>Computer Simulation</topic><topic>Entropy</topic><topic>Hot Temperature</topic><topic>Scaling</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilar, Jose M G</creatorcontrib><creatorcontrib>Rubi, J Miguel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilar, Jose M G</au><au>Rubi, J Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication: system-size scaling of Boltzmann and alternate Gibbs entropies</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-05-28</date><risdate>2014</risdate><volume>140</volume><issue>20</issue><spage>201101</spage><epage>201101</epage><pages>201101-201101</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>It has recurrently been proposed that the Boltzmann textbook definition of entropy S(E) = k ln Ω(E) in terms of the number of microstates Ω(E) with energy E should be replaced by the expression S(G)(E) = k ln Σ(E' &lt; E)Ω(E') examined by Gibbs. Here, we show that SG either is equivalent to S in the macroscopic limit or becomes independent of the energy exponentially fast as the system size increases. The resulting exponential scaling makes the realistic use of SG unfeasible and leads in general to temperatures that are inconsistent with the notions of hot and cold.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24880258</pmid><doi>10.1063/1.4879553</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2014-05, Vol.140 (20), p.201101-201101
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_1531955829
source MEDLINE; AIP Journals Complete; Alma/SFX Local Collection
subjects Cold Temperature
Communications systems
Computer Simulation
Entropy
Hot Temperature
Scaling
Thermodynamics
title Communication: system-size scaling of Boltzmann and alternate Gibbs entropies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication:%20system-size%20scaling%20of%20Boltzmann%20and%20alternate%20Gibbs%20entropies&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Vilar,%20Jose%20M%20G&rft.date=2014-05-28&rft.volume=140&rft.issue=20&rft.spage=201101&rft.epage=201101&rft.pages=201101-201101&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4879553&rft_dat=%3Cproquest_cross%3E1531955829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127664145&rft_id=info:pmid/24880258&rfr_iscdi=true