Communication: system-size scaling of Boltzmann and alternate Gibbs entropies
It has recurrently been proposed that the Boltzmann textbook definition of entropy S(E) = k ln Ω(E) in terms of the number of microstates Ω(E) with energy E should be replaced by the expression S(G)(E) = k ln Σ(E' < E)Ω(E') examined by Gibbs. Here, we show that SG either is equivalent t...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2014-05, Vol.140 (20), p.201101-201101 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 201101 |
---|---|
container_issue | 20 |
container_start_page | 201101 |
container_title | The Journal of chemical physics |
container_volume | 140 |
creator | Vilar, Jose M G Rubi, J Miguel |
description | It has recurrently been proposed that the Boltzmann textbook definition of entropy S(E) = k ln Ω(E) in terms of the number of microstates Ω(E) with energy E should be replaced by the expression S(G)(E) = k ln Σ(E' < E)Ω(E') examined by Gibbs. Here, we show that SG either is equivalent to S in the macroscopic limit or becomes independent of the energy exponentially fast as the system size increases. The resulting exponential scaling makes the realistic use of SG unfeasible and leads in general to temperatures that are inconsistent with the notions of hot and cold. |
doi_str_mv | 10.1063/1.4879553 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1531955829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1531955829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-6716de63382f3fc7f4365b4883315ac025c13695b73294ce087a3c43a18b60403</originalsourceid><addsrcrecordid>eNpdkLtOwzAYRi0EoqUw8AIoEgsMKf59DxtU3KQiFpgtx3WQUWKX2Bno0xPUwsD0LUefjg5Cp4DngAW9gjlTsuKc7qEpYFWVUlR4H00xJlBWAosJOkrpA2MMkrBDNCFMKUy4mqLnRey6IXhrso_hukhfKbuuTH7jimRN68N7EZviNrZ505kQChNWhWmz64PJrnjwdZ0KF3If196lY3TQmDa5k93O0Nv93evisVy-PDwtbpalpUzlUkgQKycoVaShjZUNo4LXoxOlwI0dzSxQUfFaUlIx67CShlpGDahaYIbpDF1sf9d9_Bxcyrrzybq2NcHFIWngFMYeilQjev4P_YjDKN8mTYBIIRgwPlKXW8r2MaXeNXrd-870Xxqw_mmsQe8aj-zZ7nGoO7f6I3-j0m_UTXPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127664145</pqid></control><display><type>article</type><title>Communication: system-size scaling of Boltzmann and alternate Gibbs entropies</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Vilar, Jose M G ; Rubi, J Miguel</creator><creatorcontrib>Vilar, Jose M G ; Rubi, J Miguel</creatorcontrib><description>It has recurrently been proposed that the Boltzmann textbook definition of entropy S(E) = k ln Ω(E) in terms of the number of microstates Ω(E) with energy E should be replaced by the expression S(G)(E) = k ln Σ(E' < E)Ω(E') examined by Gibbs. Here, we show that SG either is equivalent to S in the macroscopic limit or becomes independent of the energy exponentially fast as the system size increases. The resulting exponential scaling makes the realistic use of SG unfeasible and leads in general to temperatures that are inconsistent with the notions of hot and cold.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4879553</identifier><identifier>PMID: 24880258</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Cold Temperature ; Communications systems ; Computer Simulation ; Entropy ; Hot Temperature ; Scaling ; Thermodynamics</subject><ispartof>The Journal of chemical physics, 2014-05, Vol.140 (20), p.201101-201101</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-6716de63382f3fc7f4365b4883315ac025c13695b73294ce087a3c43a18b60403</citedby><cites>FETCH-LOGICAL-c348t-6716de63382f3fc7f4365b4883315ac025c13695b73294ce087a3c43a18b60403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24880258$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vilar, Jose M G</creatorcontrib><creatorcontrib>Rubi, J Miguel</creatorcontrib><title>Communication: system-size scaling of Boltzmann and alternate Gibbs entropies</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>It has recurrently been proposed that the Boltzmann textbook definition of entropy S(E) = k ln Ω(E) in terms of the number of microstates Ω(E) with energy E should be replaced by the expression S(G)(E) = k ln Σ(E' < E)Ω(E') examined by Gibbs. Here, we show that SG either is equivalent to S in the macroscopic limit or becomes independent of the energy exponentially fast as the system size increases. The resulting exponential scaling makes the realistic use of SG unfeasible and leads in general to temperatures that are inconsistent with the notions of hot and cold.</description><subject>Cold Temperature</subject><subject>Communications systems</subject><subject>Computer Simulation</subject><subject>Entropy</subject><subject>Hot Temperature</subject><subject>Scaling</subject><subject>Thermodynamics</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkLtOwzAYRi0EoqUw8AIoEgsMKf59DxtU3KQiFpgtx3WQUWKX2Bno0xPUwsD0LUefjg5Cp4DngAW9gjlTsuKc7qEpYFWVUlR4H00xJlBWAosJOkrpA2MMkrBDNCFMKUy4mqLnRey6IXhrso_hukhfKbuuTH7jimRN68N7EZviNrZ505kQChNWhWmz64PJrnjwdZ0KF3If196lY3TQmDa5k93O0Nv93evisVy-PDwtbpalpUzlUkgQKycoVaShjZUNo4LXoxOlwI0dzSxQUfFaUlIx67CShlpGDahaYIbpDF1sf9d9_Bxcyrrzybq2NcHFIWngFMYeilQjev4P_YjDKN8mTYBIIRgwPlKXW8r2MaXeNXrd-870Xxqw_mmsQe8aj-zZ7nGoO7f6I3-j0m_UTXPo</recordid><startdate>20140528</startdate><enddate>20140528</enddate><creator>Vilar, Jose M G</creator><creator>Rubi, J Miguel</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20140528</creationdate><title>Communication: system-size scaling of Boltzmann and alternate Gibbs entropies</title><author>Vilar, Jose M G ; Rubi, J Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-6716de63382f3fc7f4365b4883315ac025c13695b73294ce087a3c43a18b60403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cold Temperature</topic><topic>Communications systems</topic><topic>Computer Simulation</topic><topic>Entropy</topic><topic>Hot Temperature</topic><topic>Scaling</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilar, Jose M G</creatorcontrib><creatorcontrib>Rubi, J Miguel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilar, Jose M G</au><au>Rubi, J Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication: system-size scaling of Boltzmann and alternate Gibbs entropies</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-05-28</date><risdate>2014</risdate><volume>140</volume><issue>20</issue><spage>201101</spage><epage>201101</epage><pages>201101-201101</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>It has recurrently been proposed that the Boltzmann textbook definition of entropy S(E) = k ln Ω(E) in terms of the number of microstates Ω(E) with energy E should be replaced by the expression S(G)(E) = k ln Σ(E' < E)Ω(E') examined by Gibbs. Here, we show that SG either is equivalent to S in the macroscopic limit or becomes independent of the energy exponentially fast as the system size increases. The resulting exponential scaling makes the realistic use of SG unfeasible and leads in general to temperatures that are inconsistent with the notions of hot and cold.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>24880258</pmid><doi>10.1063/1.4879553</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2014-05, Vol.140 (20), p.201101-201101 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_1531955829 |
source | MEDLINE; AIP Journals Complete; Alma/SFX Local Collection |
subjects | Cold Temperature Communications systems Computer Simulation Entropy Hot Temperature Scaling Thermodynamics |
title | Communication: system-size scaling of Boltzmann and alternate Gibbs entropies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication:%20system-size%20scaling%20of%20Boltzmann%20and%20alternate%20Gibbs%20entropies&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Vilar,%20Jose%20M%20G&rft.date=2014-05-28&rft.volume=140&rft.issue=20&rft.spage=201101&rft.epage=201101&rft.pages=201101-201101&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4879553&rft_dat=%3Cproquest_cross%3E1531955829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127664145&rft_id=info:pmid/24880258&rfr_iscdi=true |