Communication: system-size scaling of Boltzmann and alternate Gibbs entropies

It has recurrently been proposed that the Boltzmann textbook definition of entropy S(E) = k ln Ω(E) in terms of the number of microstates Ω(E) with energy E should be replaced by the expression S(G)(E) = k ln Σ(E' < E)Ω(E') examined by Gibbs. Here, we show that SG either is equivalent t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2014-05, Vol.140 (20), p.201101-201101
Hauptverfasser: Vilar, Jose M G, Rubi, J Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has recurrently been proposed that the Boltzmann textbook definition of entropy S(E) = k ln Ω(E) in terms of the number of microstates Ω(E) with energy E should be replaced by the expression S(G)(E) = k ln Σ(E' < E)Ω(E') examined by Gibbs. Here, we show that SG either is equivalent to S in the macroscopic limit or becomes independent of the energy exponentially fast as the system size increases. The resulting exponential scaling makes the realistic use of SG unfeasible and leads in general to temperatures that are inconsistent with the notions of hot and cold.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4879553