Synip phosphorylation is required for insulin-stimulated Glut4 translocation and glucose uptake in podocyte [Rapid Communication]
Previously we reported that the phosphorylation of Synip on serine 99 is required for Synip dissociation from Syntaxin4 and insulin-stimulated Glut4 translocation in cultured 3T3-L1 adipocytes. We also reported that the dissociated Synip remains anchored to the plasma membrane by binding to Phosphat...
Gespeichert in:
Veröffentlicht in: | ENDOCRINE JOURNAL 2014, Vol.61(5), pp.523-527 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Previously we reported that the phosphorylation of Synip on serine 99 is required for Synip dissociation from Syntaxin4 and insulin-stimulated Glut4 translocation in cultured 3T3-L1 adipocytes. We also reported that the dissociated Synip remains anchored to the plasma membrane by binding to Phosphatidylinositol (3,4,5)-triphosphate. Recently Synip was reported to arrest SNARE-dependent membrane fusion as a selective t-SNARE binding inhibitor. In this study, we have found that Synip is expressed in podocytes although at a somewhat lower level than in adipocytes. To determine whether phosphorylation of Synip on serine 99 is required for insulin-stimulated Glut4 translocation and glucose uptake in podocytes we expressed a phosphorylation deficient Synip mutant (S99A-Synip) that inhibited insulin-stimulated Glut4 translocation and 2-deoxyglucose uptake in adipocytes. We conclude that serine 99 phosphorylation of Synip is required for Glut4 translocation and glucose uptake in both adipocytes and podocytes, suggesting that defects in Synip phosphorylation may underlie insulin resistance and associated diabetic nephropathy. |
---|---|
ISSN: | 0918-8959 1348-4540 |
DOI: | 10.1507/endocrj.EJ14-0099 |