Actuator fault detection and isolation: An optimised parity space approach
The use of an optimised parity space approach for actuator fault detection and isolation (FDI) is explored. The parity space spans all the parity relations that quantify the analytical redundancies available between the sensor outputs and the actuator inputs of a system. A transformation matrix is t...
Gespeichert in:
Veröffentlicht in: | Control engineering practice 2014-05, Vol.26, p.222-232 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of an optimised parity space approach for actuator fault detection and isolation (FDI) is explored. The parity space spans all the parity relations that quantify the analytical redundancies available between the sensor outputs and the actuator inputs of a system. A transformation matrix is then optimised to transform these parity relations into residuals that are especially sensitive to specific actuator faults. Actuator faults cause the variance of parity space residuals to increase. A cumulative summation procedure is used to determine when residual variance has changed sufficiently to indicate a locked-in-place actuator fault. A pseudoinverse actuator estimation scheme is used to extract the actuator deflections from the parity relations. It is found that the optimisation of the parity space approach introduces the advantage of added design freedom to the fault detection algorithm. The approach is applied to the identification of faulty aircraft control surface actuators that remain locked-in-place during flight and is successfully tested both in simulation and practical flight.
•We simulate and fly a UAV with a fault detection and isolation (FDI) algorithm.•The parity space method is used to create FDI residuals.•We see that optimising the residual transformation gives extra design freedom.•The approach successfully identifies faulty actuators that remain locked-in-place. |
---|---|
ISSN: | 0967-0661 1873-6939 |
DOI: | 10.1016/j.conengprac.2014.01.013 |