On the number of hypercubic bipartitions of an integer
For n≤2k we study the maximum number of edges of an induced subgraph on n vertices of the k-dimensional hypercube Qk. In the process we revisit a well-known divide-and-conquer maximin recurrence f(n)=max(min(n1,n2)+f(n1)+f(n2)) where the maximum is taken over all proper bipartitions n=n1+n2. We firs...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2013-12, Vol.313 (24), p.2857-2864 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For n≤2k we study the maximum number of edges of an induced subgraph on n vertices of the k-dimensional hypercube Qk. In the process we revisit a well-known divide-and-conquer maximin recurrence f(n)=max(min(n1,n2)+f(n1)+f(n2)) where the maximum is taken over all proper bipartitions n=n1+n2. We first use known results to present a characterization of those bipartitions n=n1+n2 that yield the maximum f(n)=min(n1,n2)+f(n1)+f(n2). Then we use this characterization to present the main result of this article, namely, for a given n∈N, the determination of the number h(n) of these bipartitions that yield the said maximum f(n). We present recursive formulae for h(n), a generating function h(x), and an explicit formula for h(n) in terms of a special representation of n. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2013.08.033 |