On the number of hypercubic bipartitions of an integer

For n≤2k we study the maximum number of edges of an induced subgraph on n vertices of the k-dimensional hypercube Qk. In the process we revisit a well-known divide-and-conquer maximin recurrence f(n)=max(min(n1,n2)+f(n1)+f(n2)) where the maximum is taken over all proper bipartitions n=n1+n2. We firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2013-12, Vol.313 (24), p.2857-2864
1. Verfasser: Agnarsson, Geir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For n≤2k we study the maximum number of edges of an induced subgraph on n vertices of the k-dimensional hypercube Qk. In the process we revisit a well-known divide-and-conquer maximin recurrence f(n)=max(min(n1,n2)+f(n1)+f(n2)) where the maximum is taken over all proper bipartitions n=n1+n2. We first use known results to present a characterization of those bipartitions n=n1+n2 that yield the maximum f(n)=min(n1,n2)+f(n1)+f(n2). Then we use this characterization to present the main result of this article, namely, for a given n∈N, the determination of the number h(n) of these bipartitions that yield the said maximum f(n). We present recursive formulae for h(n), a generating function h(x), and an explicit formula for h(n) in terms of a special representation of n.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2013.08.033